Gaussian blur adalah metode yang digunakan untuk mengaburkan gambar dengan lancar. Ini melibatkan pembuatan matriks yang akan digunakan dengan membelitnya dengan piksel gambar. Dalam tantangan ini, tugas Anda adalah membuat matriks yang digunakan dalam Gaussian blur. Anda akan mengambil input r yang akan menjadi jari-jari blur dan input σ yang akan menjadi standar deviasi untuk membangun matriks dengan dimensi (2 r + 1 × 2 r + 1). Setiap nilai dalam matriks itu akan memiliki nilai ( x , y ) yang tergantung pada jarak absolutnya di setiap arah dari pusat dan akan digunakan untuk menghitung G ( x , y ) di mana rumusG adalah
Sebagai contoh, jika r = 2, kami ingin menghasilkan matriks 5 x 5. Pertama, matriks nilai ( x , y ) adalah
(2, 2) (1, 2) (0, 2) (1, 2) (2, 2)
(2, 1) (1, 1) (0, 1) (1, 1) (2, 1)
(2, 0) (1, 0) (0, 0) (1, 0) (2, 0)
(2, 1) (1, 1) (0, 1) (1, 1) (2, 1)
(2, 2) (1, 2) (0, 2) (1, 2) (2, 2)
Kemudian, biarkan σ = 1,5 dan terapkan G untuk masing-masing ( x , y )
0.0119552 0.0232856 0.0290802 0.0232856 0.0119552
0.0232856 0.0453542 0.0566406 0.0453542 0.0232856
0.0290802 0.0566406 0.0707355 0.0566406 0.0290802
0.0232856 0.0453542 0.0566406 0.0453542 0.0232856
0.0119552 0.0232856 0.0290802 0.0232856 0.0119552
Biasanya dalam gambar kabur, matriks ini akan dinormalisasi dengan mengambil jumlah semua nilai dalam matriks itu dan membaginya. Untuk tantangan ini, itu tidak diperlukan dan nilai mentah yang dihitung oleh rumus adalah seperti apa output yang seharusnya.
Aturan
- Ini adalah kode-golf sehingga kode terpendek menang.
- Input r akan menjadi bilangan bulat non-negatif dan σ akan menjadi bilangan real positif.
- Output harus mewakili sebuah matriks. Ini dapat diformat sebagai array 2d, string yang mewakili array 2d, atau yang serupa.
- Ketidaktepatan titik-mengambang tidak akan dihitung terhadap Anda.
Uji Kasus
(r, σ) = (0, 0.25)
2.54648
(1, 7)
0.00318244 0.00321509 0.00318244
0.00321509 0.00324806 0.00321509
0.00318244 0.00321509 0.00318244
(3, 2.5)
0.00603332 0.00900065 0.0114421 0.012395 0.0114421 0.00900065 0.00603332
0.00900065 0.0134274 0.0170696 0.0184912 0.0170696 0.0134274 0.00900065
0.0114421 0.0170696 0.0216997 0.023507 0.0216997 0.0170696 0.0114421
0.012395 0.0184912 0.023507 0.0254648 0.023507 0.0184912 0.012395
0.0114421 0.0170696 0.0216997 0.023507 0.0216997 0.0170696 0.0114421
0.00900065 0.0134274 0.0170696 0.0184912 0.0170696 0.0134274 0.00900065
0.00603332 0.00900065 0.0114421 0.012395 0.0114421 0.00900065 0.00603332
(4, 3.33)
0.00339074 0.00464913 0.00582484 0.00666854 0.00697611 0.00666854 0.00582484 0.00464913 0.00339074
0.00464913 0.00637454 0.00798657 0.0091434 0.00956511 0.0091434 0.00798657 0.00637454 0.00464913
0.00582484 0.00798657 0.0100063 0.0114556 0.011984 0.0114556 0.0100063 0.00798657 0.00582484
0.00666854 0.0091434 0.0114556 0.013115 0.0137198 0.013115 0.0114556 0.0091434 0.00666854
0.00697611 0.00956511 0.011984 0.0137198 0.0143526 0.0137198 0.011984 0.00956511 0.00697611
0.00666854 0.0091434 0.0114556 0.013115 0.0137198 0.013115 0.0114556 0.0091434 0.00666854
0.00582484 0.00798657 0.0100063 0.0114556 0.011984 0.0114556 0.0100063 0.00798657 0.00582484
0.00464913 0.00637454 0.00798657 0.0091434 0.00956511 0.0091434 0.00798657 0.00637454 0.00464913
0.00339074 0.00464913 0.00582484 0.00666854 0.00697611 0.00666854 0.00582484 0.00464913 0.00339074