Home Prime Generator Tercepat


23

Apa yang dimaksud dengan prime home?

Sebagai contoh, ambil HP (4). Pertama, temukan faktor prima. Faktor prima dari 4 ( dalam urutan numerik dari yang paling rendah hingga yang terbesar, selalu ) adalah 2, 2. Ambil faktor-faktor tersebut sebagai angka literal. 2, 2 menjadi 22. Proses anjak piutang ini berlanjut hingga Anda mencapai bilangan prima.

number    prime factors
4         2, 2
22        2, 11
211       211 is prime

Setelah Anda mencapai nomor utama, urutan berakhir. HP (4) = 211. Ini contoh yang lebih panjang, dengan 14:

number    prime factors
14        2, 7
27        3, 3, 3
333       3, 3, 37
3337      47, 71
4771      13, 367
13367     13367 is prime

Tantangan Anda adalah membuat program yang akan menghitung HP (x) yang diberikan x, dan melakukannya secepat mungkin . Anda dapat menggunakan sumber daya apa pun yang Anda inginkan, selain daftar bilangan prima rumah yang dikenal.

Perhatikan, angka-angka ini menjadi sangat besar sangat cepat. Pada x = 8, HP (x) melompat jauh ke 3331113965338635107. HP (49) belum ditemukan.

Kecepatan program akan diuji pada Raspberry Pi 2, rata-rata input berikut:

16
20
64
65
80

Jika Anda memiliki Raspberry Pi 2, tentukan sendiri programnya, maka ratakan waktunya.


3
Tentukan secepat mungkin .
LegionMammal978

1
@ LegionMammal978 Dengan kinerja runtime terbaik. Ini tantangan kode tercepat.
Noah L


1
Bagaimana kita tahu kode mana yang lebih cepat? Beberapa orang mungkin menguji pada laptop berusia lima tahun ( batuk seperti saya batuk ), sementara yang lain mungkin menggunakan beberapa desktop / server kelas atas. Selain itu, kinerja bervariasi di antara penafsir bahasa yang sama.
JungHwan Min

1
Apakah menggunakan uji primality probabilistik seperti Miller-Rabin diperbolehkan?
mil

Jawaban:


6

Mathematica, HP (80) di ~ 0,88s

NestWhile[
  FromDigits[
    Flatten[IntegerDigits /@ 
      ConstantArray @@@ FactorInteger[#]]] &, #, CompositeQ] &

Fungsi anonim. Mengambil nomor sebagai input dan mengembalikan nomor sebagai output.


Yang 1di akhir seharusnya tidak ada di sana ...
JungHwan Min

Saya tidak memiliki Mathematica di komputer saya, artinya saya harus menguji ini (dan program-program lainnya) di Raspberry Pi 2.
Noah L

Karena kita tidak bermain golf: ada CompositeQuntuk !PrimeQ(yang juga memastikan bahwa jawaban Anda tidak berulang input 1).
Martin Ender

Bagaimana mungkin Mathematica tampil HP(80)dalam waktu yang begitu singkat tanpa harus memasang hard disk di suatu tempat? Laptop i7 saya membutuhkan waktu berjam-jam untuk melakukan pemeriksaan awal, serta menemukan faktor-faktor utama, HP(80)ketika tiba 47109211289720051.
Mario

@NoahL Mathematica dapat diuji secara online. meta.codegolf.stackexchange.com/a/1445/34718
mbomb007

5

PyPy 5.4.1 64bit (linux), HP (80) ~ 1.54s

Versi 32bit akan memakan waktu sedikit lebih lambat.

Saya menggunakan empat metode faktorisasi berbeda, dengan breakpoint yang ditentukan secara empiris:

Saya mencoba sebentar untuk menemukan jeda bersih antara ECF dan MPQS, tetapi sepertinya tidak ada. Namun, jika n mengandung faktor kecil, ECF biasanya akan segera menemukannya, jadi saya memilih untuk menguji hanya beberapa kurva, sebelum beralih ke MPQS.

Saat ini, hanya ~ 2x lebih lambat dari Mathmatica, yang saya anggap sukses.


home-prime.py

import math
import my_math
import mpqs

max_trial = 1e10
max_pollard = 1e22

def factor(n):
  if n < max_trial:
    return factor_trial(n)
  for p in my_math.small_primes:
    if n%p == 0:
      return [p] + factor(n/p)
  if my_math.is_prime(n):
    return [n]
  if n < max_pollard:
    p = pollard_rho(n)
  else:
    p = lenstra_ecf(n) or mpqs.mpqs(n)
  return factor(p) + factor(n/p)


def factor_trial(n):
  a = []
  for p in my_math.small_primes:
    while n%p == 0:
      a += [p]
      n /= p
  i = 211
  while i*i < n:
    for o in my_math.offsets:
      i += o
      while n%i == 0:
        a += [i]
        n /= i
  if n > 1:
    a += [n]
  return a


def pollard_rho(n):
  # Brent's variant
  y, r, q = 0, 1, 1
  c, m = 9, 40
  g = 1
  while g == 1:
    x = y
    for i in range(r):
      y = (y*y + c) % n
    k = 0
    while k < r and g == 1:
      ys = y
      for j in range(min(m, r-k)):
        y = (y*y + c) % n
        q = q*abs(x-y) % n
      g = my_math.gcd(q, n)
      k += m
    r *= 2
  if g == n:
    ys = (ys*ys + c) % n
    g = gcd(n, abs(x-ys))
    while g == 1:
      ys = (ys*ys + c) % n
      g = gcd(n, abs(x-ys))
  return g

def ec_add((x1, z1), (x2, z2), (x0, z0), n):
  t1, t2 = (x1-z1)*(x2+z2), (x1+z1)*(x2-z2)
  x, z = t1+t2, t1-t2
  return (z0*x*x % n, x0*z*z % n)

def ec_double((x, z), (a, b), n):
  t1 = x+z; t1 *= t1
  t2 = x-z; t2 *= t2
  t3 = t1 - t2
  t4 = 4*b*t2
  return (t1*t4 % n, t3*(t4 + a*t3) % n)

def ec_multiply(k, p, C, n):
  # Montgomery ladder algorithm
  p0 = p
  q, p = p, ec_double(p, C, n)
  b = k >> 1
  while b > (b & -b):
    b ^= b & -b
  while b:
    if k&b:
      q, p = ec_add(p, q, p0, n), ec_double(p, C, n)
    else:
      q, p = ec_double(q, C, n), ec_add(p, q, p0, n),
    b >>= 1
  return q

def lenstra_ecf(n, m = 5):
  # Montgomery curves w/ Suyama parameterization.
  # Based on pseudocode found in:
  # "Implementing the Elliptic Curve Method of Factoring in Reconfigurable Hardware"
  # Gaj, Kris et. al
  # http://www.hyperelliptic.org/tanja/SHARCS/talks06/Gaj.pdf
  # Phase 2 is not implemented.
  B1, B2 = 8, 13
  for i in range(m):
    pg = my_math.primes()
    p = pg.next()
    k = 1
    while p < B1:
      k *= p**int(math.log(B1, p))
      p = pg.next()
    for s in range(B1, B2):
      u, v = s*s-5, 4*s
      x = u*u*u
      z = v*v*v
      t = pow(v-u, 3, n)
      P = (x, z)
      C = (t*(3*u+v) % n, 4*x*v % n)
      Q = ec_multiply(k, P, C, n)
      g = my_math.gcd(Q[1], n)
      if 1 < g < n: return g
    B1, B2 = B2, B1 + B2


if __name__ == '__main__':
  import time
  import sys
  for n in sys.argv[1:]:
    t0 = time.time()
    i = int(n)
    f = []
    while len(f) != 1:
      f = sorted(factor(i))
      #print i, f
      i = int(''.join(map(str, f)))
    t1 = time.time()-t0
    print n, i
    print '%.3fs'%(t1)
    print

Contoh waktu

    $ pypy home-prime.py 8 16 20 64 65 80
8 3331113965338635107
0.005s

16 31636373
0.001s

20 3318308475676071413
0.004s

64 1272505013723
0.000s

65 1381321118321175157763339900357651
0.397s

80 313169138727147145210044974146858220729781791489
1.537s

Rata-rata dari 5 adalah sekitar 0,39.


Ketergantungan

mpqs.pydiambil langsung dari jawaban saya untuk faktorisasi semiprime Tercepat dengan beberapa modifikasi yang sangat kecil.

mpqs.py

import math
import my_math
import time

# Multiple Polynomial Quadratic Sieve
def mpqs(n, verbose=False):
  if verbose:
    time1 = time.time()

  root_n = my_math.isqrt(n)
  root_2n = my_math.isqrt(n+n)

  # formula chosen by experimentation
  # seems to be close to optimal for n < 10^50
  bound = int(5 * math.log(n, 10)**2)

  prime = []
  mod_root = []
  log_p = []
  num_prime = 0

  # find a number of small primes for which n is a quadratic residue
  p = 2
  while p < bound or num_prime < 3:

    # legendre (n|p) is only defined for odd p
    if p > 2:
      leg = my_math.legendre(n, p)
    else:
      leg = n & 1

    if leg == 1:
      prime += [p]
      mod_root += [int(my_math.mod_sqrt(n, p))]
      log_p += [math.log(p, 10)]
      num_prime += 1
    elif leg == 0:
      if verbose:
        print 'trial division found factors:'
        print p, 'x', n/p
      return p

    p = my_math.next_prime(p)

  # size of the sieve
  x_max = bound*8

  # maximum value on the sieved range
  m_val = (x_max * root_2n) >> 1

  # fudging the threshold down a bit makes it easier to find powers of primes as factors
  # as well as partial-partial relationships, but it also makes the smoothness check slower.
  # there's a happy medium somewhere, depending on how efficient the smoothness check is
  thresh = math.log(m_val, 10) * 0.735

  # skip small primes. they contribute very little to the log sum
  # and add a lot of unnecessary entries to the table
  # instead, fudge the threshold down a bit, assuming ~1/4 of them pass
  min_prime = int(thresh*3)
  fudge = sum(log_p[i] for i,p in enumerate(prime) if p < min_prime)/4
  thresh -= fudge

  sieve_primes = [p for p in prime if p >= min_prime]
  sp_idx = prime.index(sieve_primes[0])

  if verbose:
    print 'smoothness bound:', bound
    print 'sieve size:', x_max
    print 'log threshold:', thresh
    print 'skipping primes less than:', min_prime

  smooth = []
  used_prime = set()
  partial = {}
  num_smooth = 0
  prev_num_smooth = 0
  num_used_prime = 0
  num_partial = 0
  num_poly = 0
  root_A = my_math.isqrt(root_2n / x_max)

  if verbose:
    print 'sieving for smooths...'
  while True:
    # find an integer value A such that:
    # A is =~ sqrt(2*n) / x_max
    # A is a perfect square
    # sqrt(A) is prime, and n is a quadratic residue mod sqrt(A)
    while True:
      root_A = my_math.next_prime(root_A)
      leg = my_math.legendre(n, root_A)
      if leg == 1:
        break
      elif leg == 0:
        if verbose:
          print 'dumb luck found factors:'
          print root_A, 'x', n/root_A
        return root_A

    A = root_A * root_A

    # solve for an adequate B
    # B*B is a quadratic residue mod n, such that B*B-A*C = n
    # this is unsolvable if n is not a quadratic residue mod sqrt(A)
    b = my_math.mod_sqrt(n, root_A)
    B = (b + (n - b*b) * my_math.mod_inv(b + b, root_A))%A

    # B*B-A*C = n <=> C = (B*B-n)/A
    C = (B*B - n) / A

    num_poly += 1

    # sieve for prime factors
    sums = [0.0]*(2*x_max)
    i = sp_idx
    for p in sieve_primes:
      logp = log_p[i]

      inv_A = my_math.mod_inv(A, p)
      # modular root of the quadratic
      a = int(((mod_root[i] - B) * inv_A)%p)
      b = int(((p - mod_root[i] - B) * inv_A)%p)

      amx = a+x_max
      bmx = b+x_max

      ax = amx-p
      bx = bmx-p

      k = p
      while k < x_max:
        sums[k+ax] += logp
        sums[k+bx] += logp
        sums[amx-k] += logp
        sums[bmx-k] += logp
        k += p

      if k+ax < x_max:  
        sums[k+ax] += logp
      if k+bx < x_max:
        sums[k+bx] += logp
      if amx-k > 0:
        sums[amx-k] += logp
      if bmx-k > 0:
        sums[bmx-k] += logp
      i += 1

    # check for smooths
    x = -x_max
    for v in sums:
      if v > thresh:
        vec = set()
        sqr = []
        # because B*B-n = A*C
        # (A*x+B)^2 - n = A*A*x*x+2*A*B*x + B*B - n
        #               = A*(A*x*x+2*B*x+C)
        # gives the congruency
        # (A*x+B)^2 = A*(A*x*x+2*B*x+C) (mod n)
        # because A is chosen to be square, it doesn't need to be sieved
        sieve_val = (A*x + B+B)*x + C

        if sieve_val < 0:
          vec = {-1}
          sieve_val = -sieve_val

        for p in prime:
          while sieve_val%p == 0:
            if p in vec:
              # keep track of perfect square factors
              # to avoid taking the sqrt of a gigantic number at the end
              sqr += [p]
            vec ^= {p}
            sieve_val = int(sieve_val / p)

        if sieve_val == 1:
          # smooth
          smooth += [(vec, (sqr, (A*x+B), root_A))]
          used_prime |= vec
        elif sieve_val in partial:
          # combine two partials to make a (xor) smooth
          # that is, every prime factor with an odd power is in our factor base
          pair_vec, pair_vals = partial[sieve_val]
          sqr += list(vec & pair_vec) + [sieve_val]
          vec ^= pair_vec
          smooth += [(vec, (sqr + pair_vals[0], (A*x+B)*pair_vals[1], root_A*pair_vals[2]))]
          used_prime |= vec
          num_partial += 1
        else:
          # save partial for later pairing
          partial[sieve_val] = (vec, (sqr, A*x+B, root_A))
      x += 1

    prev_num_smooth = num_smooth
    num_smooth = len(smooth)
    num_used_prime = len(used_prime)

    if verbose:
      print 100 * num_smooth / num_prime, 'percent complete\r',

    if num_smooth > num_used_prime and num_smooth > prev_num_smooth:
      if verbose:
        print '%d polynomials sieved (%d values)'%(num_poly, num_poly*x_max*2)
        print 'found %d smooths (%d from partials) in %f seconds'%(num_smooth, num_partial, time.time()-time1)
        print 'solving for non-trivial congruencies...'

      used_prime_list = sorted(list(used_prime))

      # set up bit fields for gaussian elimination
      masks = []
      mask = 1
      bit_fields = [0]*num_used_prime
      for vec, vals in smooth:
        masks += [mask]
        i = 0
        for p in used_prime_list:
          if p in vec: bit_fields[i] |= mask
          i += 1
        mask <<= 1

      # row echelon form
      col_offset = 0
      null_cols = []
      for col in xrange(num_smooth):
        pivot = col-col_offset == num_used_prime or bit_fields[col-col_offset] & masks[col] == 0
        for row in xrange(col+1-col_offset, num_used_prime):
          if bit_fields[row] & masks[col]:
            if pivot:
              bit_fields[col-col_offset], bit_fields[row] = bit_fields[row], bit_fields[col-col_offset]
              pivot = False
            else:
              bit_fields[row] ^= bit_fields[col-col_offset]
        if pivot:
          null_cols += [col]
          col_offset += 1

      # reduced row echelon form
      for row in xrange(num_used_prime):
        # lowest set bit
        mask = bit_fields[row] & -bit_fields[row]
        for up_row in xrange(row):
          if bit_fields[up_row] & mask:
            bit_fields[up_row] ^= bit_fields[row]

      # check for non-trivial congruencies
      for col in null_cols:
        all_vec, (lh, rh, rA) = smooth[col]
        lhs = lh   # sieved values (left hand side)
        rhs = [rh] # sieved values - n (right hand side)
        rAs = [rA] # root_As (cofactor of lhs)
        i = 0
        for field in bit_fields:
          if field & masks[col]:
            vec, (lh, rh, rA) = smooth[i]
            lhs += list(all_vec & vec) + lh
            all_vec ^= vec
            rhs += [rh]
            rAs += [rA]
          i += 1

        factor = my_math.gcd(my_math.list_prod(rAs)*my_math.list_prod(lhs) - my_math.list_prod(rhs), n)
        if 1 < factor < n:
          break
      else:
        if verbose:
          print 'none found.'
        continue
      break

  if verbose:
    print 'factors found:'
    print factor, 'x', n/factor
    print 'time elapsed: %f seconds'%(time.time()-time1)
  return factor

if __name__ == "__main__":
  import argparse
  parser = argparse.ArgumentParser(description='Uses a MPQS to factor a composite number')
  parser.add_argument('composite', metavar='number_to_factor', type=long, help='the composite number to factor')
  parser.add_argument('--verbose', dest='verbose', action='store_true', help="enable verbose output")
  args = parser.parse_args()

  if args.verbose:
    mpqs(args.composite, args.verbose)
  else:
    time1 = time.time()
    print mpqs(args.composite)
    print 'time elapsed: %f seconds'%(time.time()-time1)

my_math.pydiambil dari pos yang sama seperti mpqs.py, namun saya juga telah menambahkan dalam bilangan prima generator tak terbatas yang saya gunakan dalam jawaban saya untuk Menemukan kesenjangan terbesar antara bilangan prima yang baik .

my_math.py

# primes less than 212
small_primes = [
    2,  3,  5,  7, 11, 13, 17, 19, 23, 29, 31, 37,
   41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
   97,101,103,107,109,113,127,131,137,139,149,151,
  157,163,167,173,179,181,191,193,197,199,211]

# pre-calced sieve of eratosthenes for n = 2, 3, 5, 7
indices = [
    1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
   53, 59, 61, 67, 71, 73, 79, 83, 89, 97,101,103,
  107,109,113,121,127,131,137,139,143,149,151,157,
  163,167,169,173,179,181,187,191,193,197,199,209]

# distances between sieve values
offsets = [
  10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6,
   6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4,
   2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 6,
   4, 2, 4, 6, 2, 6, 4, 2, 4, 2,10, 2]

# tabulated, mod 105
dindices =[
  0,10, 2, 0, 4, 0, 0, 0, 8, 0, 0, 2, 0, 4, 0,
  0, 6, 2, 0, 4, 0, 0, 4, 6, 0, 0, 6, 0, 0, 2,
  0, 6, 2, 0, 4, 0, 0, 4, 6, 0, 0, 2, 0, 4, 2,
  0, 6, 6, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 4, 2,
  0, 6, 2, 0, 4, 0, 0, 4, 6, 0, 0, 2, 0, 6, 2,
  0, 6, 0, 0, 4, 0, 0, 4, 6, 0, 0, 2, 0, 4, 8,
  0, 0, 2, 0,10, 0, 0, 4, 0, 0, 0, 2, 0, 4, 2]

max_int = 2147483647


# returns the index of x in a sorted list a
# or the index of the next larger item if x is not present
# i.e. the proper insertion point for x in a
def binary_search(a, x):
  s = 0
  e = len(a)
  m = e >> 1
  while m != e:
    if a[m] < x:
      s = m
      m = (s + e + 1) >> 1
    else:
      e = m
      m = (s + e) >> 1
  return m


# divide and conquer list product
def list_prod(a):
  size = len(a)
  if size == 1:
    return a[0]
  return list_prod(a[:size>>1]) * list_prod(a[size>>1:])


# greatest common divisor of a and b
def gcd(a, b):
  while b:
    a, b = b, a%b
  return a


# extended gcd
def ext_gcd(a, m):
  a = int(a%m)
  x, u = 0, 1
  while a:
    x, u = u, x - (m/a)*u
    m, a = a, m%a
  return (m, x, u)


# legendre symbol (a|m)
# note: returns m-1 if a is a non-residue, instead of -1
def legendre(a, m):
  return pow(a, (m-1) >> 1, m)


# modular inverse of a mod m
def mod_inv(a, m):
  return ext_gcd(a, m)[1]


# modular sqrt(n) mod p
# p must be prime
def mod_sqrt(n, p):
  a = n%p
  if p%4 == 3:
    return pow(a, (p+1) >> 2, p)
  elif p%8 == 5:
    v = pow(a << 1, (p-5) >> 3, p)
    i = ((a*v*v << 1) % p) - 1
    return (a*v*i)%p
  elif p%8 == 1:
    # Shank's method
    q = p-1
    e = 0
    while q&1 == 0:
      e += 1
      q >>= 1

    n = 2
    while legendre(n, p) != p-1:
      n += 1

    w = pow(a, q, p)
    x = pow(a, (q+1) >> 1, p)
    y = pow(n, q, p)
    r = e
    while True:
      if w == 1:
        return x

      v = w
      k = 0
      while v != 1 and k+1 < r:
        v = (v*v)%p
        k += 1

      if k == 0:
        return x

      d = pow(y, 1 << (r-k-1), p)
      x = (x*d)%p
      y = (d*d)%p
      w = (w*y)%p
      r = k
  else: # p == 2
    return a


#integer sqrt of n
def isqrt(n):
  c = n*4/3
  d = c.bit_length()

  a = d>>1
  if d&1:
    x = 1 << a
    y = (x + (n >> a)) >> 1
  else:
    x = (3 << a) >> 2
    y = (x + (c >> a)) >> 1

  if x != y:
    x = y
    y = (x + n/x) >> 1
    while y < x:
      x = y
      y = (x + n/x) >> 1
  return x


# integer cbrt of n
def icbrt(n):
  d = n.bit_length()

  if d%3 == 2:
    x = 3 << d/3-1
  else:
    x = 1 << d/3

  y = (2*x + n/(x*x))/3
  if x != y:
    x = y
    y = (2*x + n/(x*x))/3
    while y < x:
      x = y
      y = (2*x + n/(x*x))/3
  return x


# strong probable prime
def is_sprp(n, b=2):
  if n < 2: return False
  d = n-1
  s = 0
  while d&1 == 0:
    s += 1
    d >>= 1

  x = pow(b, d, n)
  if x == 1 or x == n-1:
    return True

  for r in xrange(1, s):
    x = (x * x)%n
    if x == 1:
      return False
    elif x == n-1:
      return True

  return False


# lucas probable prime
# assumes D = 1 (mod 4), (D|n) = -1
def is_lucas_prp(n, D):
  P = 1
  Q = (1-D) >> 2

  # n+1 = 2**r*s where s is odd
  s = n+1
  r = 0
  while s&1 == 0:
    r += 1
    s >>= 1

  # calculate the bit reversal of (odd) s
  # e.g. 19 (10011) <=> 25 (11001)
  t = 0
  while s:
    if s&1:
      t += 1
      s -= 1
    else:
      t <<= 1
      s >>= 1

  # use the same bit reversal process to calculate the sth Lucas number
  # keep track of q = Q**n as we go
  U = 0
  V = 2
  q = 1
  # mod_inv(2, n)
  inv_2 = (n+1) >> 1
  while t:
    if t&1:
      # U, V of n+1
      U, V = ((U + V) * inv_2)%n, ((D*U + V) * inv_2)%n
      q = (q * Q)%n
      t -= 1
    else:
      # U, V of n*2
      U, V = (U * V)%n, (V * V - 2 * q)%n
      q = (q * q)%n
      t >>= 1

  # double s until we have the 2**r*sth Lucas number
  while r:
    U, V = (U * V)%n, (V * V - 2 * q)%n
    q = (q * q)%n
    r -= 1

  # primality check
  # if n is prime, n divides the n+1st Lucas number, given the assumptions
  return U == 0


## Baillie-PSW ##
# this is technically a probabalistic test, but there are no known pseudoprimes
def is_bpsw(n):
  if not is_sprp(n, 2): return False

  # idea shamelessly stolen from Mathmatica's PrimeQ
  # if n is a 2-sprp and a 3-sprp, n is necessarily square-free
  if not is_sprp(n, 3): return False

  a = 5
  s = 2
  # if n is a perfect square, this will never terminate
  while legendre(a, n) != n-1:
    s = -s
    a = s-a
  return is_lucas_prp(n, a)


# an 'almost certain' primality check
def is_prime(n):
  if n < 212:
    m = binary_search(small_primes, n)
    return n == small_primes[m]

  for p in small_primes:
    if n%p == 0:
      return False

  # if n is a 32-bit integer, perform full trial division
  if n <= max_int:
    p = 211
    while p*p < n:
      for o in offsets:
        p += o
        if n%p == 0:
          return False
    return True

  return is_bpsw(n)


# next prime strictly larger than n
def next_prime(n):
  if n < 2:
    return 2

  # first odd larger than n
  n = (n + 1) | 1
  if n < 212:
    m = binary_search(small_primes, n)
    return small_primes[m]

  # find our position in the sieve rotation via binary search
  x = int(n%210)
  m = binary_search(indices, x)
  i = int(n + (indices[m] - x))

  # adjust offsets
  offs = offsets[m:] + offsets[:m]
  while True:
    for o in offs:
      if is_prime(i):
        return i
      i += o


# an infinite prime number generator
def primes(start = 0):
  for n in small_primes[start:]: yield n
  pg = primes(6)
  p = pg.next()
  q = p*p
  sieve = {221: 13, 253: 11}
  n = 211
  while True:
    for o in offsets:
      n += o
      stp = sieve.pop(n, 0)
      if stp:
        nxt = n/stp
        nxt += dindices[nxt%105]
        while nxt*stp in sieve:
          nxt += dindices[nxt%105]
        sieve[nxt*stp] = stp
      elif n < q:
        yield n
      else:
        sieve[q + dindices[p%105]*p] = p
        p = pg.next()
        q = p*p


# true if n is a prime power > 0
def is_prime_power(n):
  if n > 1:
    for p in small_primes:
      if n%p == 0:
        n /= p
        while n%p == 0: n /= p
        return n == 1

    r = isqrt(n)
    if r*r == n:
      return is_prime_power(r)

    s = icbrt(n)
    if s*s*s == n:
      return is_prime_power(s)

    p = 211
    while p*p < r:
      for o in offsets:
        p += o
        if n%p == 0:
          n /= p
          while n%p == 0: n /= p
          return n == 1

    if n <= max_int:
      while p*p < n:
        for o in offsets:
          p += o
          if n%p == 0:
            return False
      return True

    return is_bpsw(n)
  return False

2

Python 2 + primefac 1.1

Saya tidak punya Raspberry Pi untuk mengujinya.

from primefac import primefac

def HP(n):
    factors = list(primefac(n))

    #print n, factors

    if len(factors) == 1 and n in factors:
        return n

    n = ""
    for f in sorted(factors):
        n += str(f)
    return HP(int(n))

Cobalah online

The primefacmengembalikan fungsi daftar semua faktor prima dari n. Dalam definisinya, ia memanggil isprime(n), yang menggunakan kombinasi divisi uji coba, metode Euler, dan uji keutamaan Miller-Rabin. Saya merekomendasikan mengunduh paket dan melihat sumbernya.

Saya mencoba menggunakan n = n * 10 ** int(floor(log10(f))+1) + fbukan penggabungan string, tetapi jauh lebih lambat.


pip install primefacbekerja untuk saya, meskipun 65 dan 80 sepertinya tidak berjalan di windows, karena forking di latar belakang.
Primo

Melihat sumbernya primefacsangat lucu, karena ada banyak komentar dengan TODOataufind out why this is throwing errors
mbomb007

Saya juga melakukannya. Penulis sebenarnya menggunakan mpqs saya! ... sedikit dimodifikasi. Baris 551 # This occasionally throws IndexErrors.Ya, karena dia menghapus cek bahwa ada lebih banyak smooths daripada faktor primes yang digunakan.
Primo

Anda harus membantunya. :)
mbomb007

Saya mungkin akan menghubungi dia ketika saya sudah selesai dengan tantangan ini, saya bermaksud untuk bekerja sedikit mengoptimalkan mpqs (harus mengalahkan mathmatica, apakah saya benar?).
Primo

2

C #

using System;
using System.Linq;

public class Program
{
    public static void Main(string[] args) {

        Console.Write("Enter Number: ");

        Int64 n = Convert.ToInt64(Console.ReadLine());

        Console.WriteLine("Start Time: " + DateTime.Now.ToString("HH:mm:ss.ffffff"));
        Console.WriteLine("Number, Factors");

        HomePrime(n);

        Console.WriteLine("End Time: " + DateTime.Now.ToString("HH:mm:ss.ffffff"));
        Console.ReadLine();
    }

    public static void HomePrime(Int64 num) {
        string s = FindFactors(num);
        if (CheckPrime(num,s) == true) {
            Console.WriteLine("{0} is prime", num);
        } else {
            Console.WriteLine("{0}, {1}", num, s);
            HomePrime(Convert.ToInt64(RemSp(s)));
        }
    }

    public static string FindFactors(Int64 num) {
        Int64 n, r, t = num;
        string f = "";
        for (n = num; n >= 2; n--) {
            r = CalcP(n, t);
            if (r != 0) {
                f = f + " " + r.ToString();
                t = n / r;
                n = n / r + 1;
            }
        }
        return f;
    }

    public static Int64 CalcP(Int64 num, Int64 tot) {
        for (Int64 i = 2; i <= tot; i++) {
            if (num % i == 0) {
                return i;
            } 
        }
        return 0;
    }

    public static string RemSp(string str) {
        return new string(str.ToCharArray().Where(c => !Char.IsWhiteSpace(c)).ToArray());
    }

    public static bool CheckPrime(Int64 num, string s) {
        if (s == "") {
            return false;
        } else if (num == Convert.ToInt64(RemSp(s))) {
            return true;
        }
        return false;
    }

}

Ini adalah versi yang lebih optimal dari kode sebelumnya, dengan beberapa bagian yang tidak perlu dihapus.

Output (pada laptop i7 saya):

Enter Number: 16
Start Time: 18:09:51.636445
Number, Factors
16,  2 2 2 2
2222,  2 11 101
211101,  3 11 6397
3116397,  3 163 6373
31636373 is prime
End Time: 18:09:51.637954

Tes online


Membuat array dengan bilangan prima / nilai yang ditentukan tidak diizinkan, saya percaya, karena ini merupakan celah standar.
P. Ktinos

@ P. Ktinos Saya pikir juga begitu ... toh itu terlalu besar untuk dimasukkan.
Mario

1

Perl + teori, HP (80) dalam 0,35 detik pada PC

Tidak ada Raspberry Pi di tangan.

use ntheory ":all";
use feature "say";
sub hp {
  my $n = shift;
  while (!is_prime($n)) {
    $n = join "",factor($n);
  }
  $n;
}
say hp($_) for (16,20,64,65,80);

Tes primality adalah ES BPSW, ditambah MR berbasis acak tunggal untuk jumlah yang lebih besar. Pada ukuran ini kita bisa menggunakanis_provable_prime (n-1 dan / atau ECPP) tanpa perbedaan kecepatan, tetapi itu akan berubah untuk nilai> 300 digit tanpa manfaat nyata. Anjak piutang meliputi uji coba, kekuasaan, Rho-Brent, P-1, SQUFOF, ECM, QS tergantung pada ukurannya.

Untuk input ini beroperasi dengan kecepatan yang sama dengan kode Charles 'Pari / GP di situs OEIS. ntheory memiliki faktorisasi yang lebih cepat untuk angka kecil, dan P-1 dan ECM saya cukup bagus, tetapi QS tidak bagus sehingga saya berharap Pari lebih cepat di beberapa titik.


1
Saya menemukan bahwa faktor apa pun yang ditemukan oleh P-1 juga ditemukan - lebih cepat - oleh ECM, jadi saya menjatuhkannya (berlaku sama untuk Williams P +1). Mungkin saya akan mencoba menambahkan SQUFOF. Perpustakaan yang brilian, btw.
primo

1
Juga use feature "say";,.
Primo
Dengan menggunakan situs kami, Anda mengakui telah membaca dan memahami Kebijakan Cookie dan Kebijakan Privasi kami.
Licensed under cc by-sa 3.0 with attribution required.