Ruby - sekitar 700 golf. Saya memulai versi golf, dengan nama karakter tunggal untuk variabel dan metode, tetapi setelah beberapa saat saya lebih tertarik pada algoritma daripada golf, jadi berhenti mencoba mengoptimalkan panjang kode. Saya juga tidak khawatir tentang mendapatkan string input. Usaha saya di bawah.
Untuk membantu Anda memahami cara kerjanya, saya menyertakan komentar yang menunjukkan bagaimana string tertentu (u = "2 1 4 3 0 3 4 4 3 5 0 3") dimanipulasi. Saya menghitung kombinasi "batu di sungai" yang tersedia untuk naik. Ini diwakili dengan string biner. Saya memberi contoh 0b0101101010 di komentar dan menunjukkan bagaimana itu akan digunakan. Angka 1 sesuai dengan posisi batu yang tersedia untuk perjalanan awal; 0 untuk perjalanan kembali. Untuk setiap alokasi tersebut, saya menggunakan pemrograman dinamis untuk menentukan jumlah minimal hop yang diperlukan di setiap arah. Saya juga melakukan beberapa optimasi sederhana untuk menghilangkan beberapa kombinasi sejak dini.
Saya sudah menjalankannya dengan string yang diberikan dalam jawaban lain dan mendapatkan hasil yang sama. Berikut beberapa hasil lain yang saya peroleh:
"2 1 4 3 0 3 4 4 3 5 0 3" # => 8
"3 4 3 5 6 4 7 4 3 1 5 6 4 3 1 4" # => 7
"2 3 2 4 5 3 6 3 2 0 4 5 3 2 0 3" # => 10
"3 4 3 0 4 3 4 4 5 3 5 3 0 4 3 3 0 3" # => 11
"2 3 2 4 5 3 6 3 2 0 4 5 3 2 0 3 4 1 6 3 8 2 0 5 2 3" # => 14
Saya akan tertarik mendengar apakah orang lain mendapatkan hasil yang sama untuk string ini. Performanya lumayan bagus. Misalnya, butuh waktu kurang dari satu menit untuk mendapatkan solusi untuk string ini:
"3 4 3 0 4 3 4 4 5 3 5 3 0 4 3 3 0 3 4 5 3 2 0 3 4 1 6 3 2 0 4 5 3 2 0 3 4 1 6 3 0 4 3 4 4 5 0 1"
Kode berikut.
I=99 # infinity - unlikely we'll attempt to solve problems with more than 48 rocks to step on
def leap!(u)
p = u.split.map(&:to_i) # p = [2,1,4,3,0,3,4,4,3,5,0,3]
s = p.shift # s=2, p = [1,4,3,0,3,4,4,3,5,0,3] # start
f = p.pop # f=3, p = [1,4,3,0,3,4,4,3,5,0] # finish
q = p.reverse # q = [0,5,3,4,4,3,0,3,4,1] # reverse order
# No path if cannot get to a non-zero rock from s or f
return -1 if t(p,s) || t(q,f)
@n=p.size # 10 rocks in the stream
r = 2**@n # 10000000000 - 11 binary digits
j = s > @n ? 0 : 2**(@n-s) # 100000000 for s = 2 (cannot leave start if combo number is smaller than j)
k=r-1 # 1111111111 - 10 binary digits
b=I # best number of hops so far (s->f + f->s), initialized to infinity
(j..k).each do |c|
# Representative combo: 0b0101101010, convert to array
c += r # 0b10 1 0 1 1 0 1 0 1 0
c = c.to_s(2).split('').map(&:to_i)
# [1,0,1,0,1,1,0,1,0,1,0]
c.shift # [0,1,0,1,1,0,1,0,1,0] s->f: rock offsets available: 1,3,4,6,8
d = c.map {|e|1-e}.reverse # [1,0,1,0,1,0,0,1,0,1] f->s: rock offsets available: 0,2,5,7,9
c = z(c,p) # [0,4,0,0,3,0,4,0,5,0] s->f: max hops by offset for combo c
d = z(d,q) # [0,0,3,0,4,0,0,3,0,1] f->s: max hops by offset for combo c
# Skip combo if cannot get from to a rock from f, or can't
# get to the end (can always get to a rock from s if s > 0).
next if [s,f,l(c),l(d)].max < @n && t(d,f)
# Compute sum of smallest number of hops from s to f and back to s,
# for combo c, and save it if it is the best solution so far.
b = [b, m([s]+c) + m([f]+d)].min
end
b < I ? b : -1 # return result
end
# t(w,n) returns true if can conclude cannot get from sourch n to destination
def t(w,n) n==0 || (w[0,n].max==0 && n < @n) end
def l(w) w.map.with_index {|e,i|i+e}.max end
def z(c,p) c.zip(p).map {|x,y| x*y} end
def m(p)
# for s->f: p = [2,0,4,0,0,3,0,4,0,5,0] - can be on rock offsets 2,5,7,9
# for f->s: p = [3,0,0,3,0,4,0,0,3,0,1] - can be on rock offsets 3,5,8,10
a=[{d: 0,i: @n+1}]
(0..@n).each do |j|
i=@n-j
v=p[i]
if v > 0
b=[I]
a.each{|h| i+v < h[:i] ? break : b << (1 + h[:d])}
m = b.min
a.unshift({d: m,i: i}) if m < I
end
end
h = a.shift
return h[:i]>0 ? I : h[:d]
end
Thus, it should be clear that one can always jump from the last position.
- bukankah1 0
sampel balik?