Satu set n
angka positif memiliki 2^n
himpunan bagian. Kami akan memanggil set "bagus" jika tidak ada himpunan bagian dari jumlah yang sama. {2, 4, 5, 8}
adalah satu set yang bagus. Karena tidak ada himpunan bagian dari jumlah yang sama, kami dapat mengurutkan himpunan bagian dengan jumlah:
[{}, {2}, {4}, {5}, {2, 4}, {2, 5}, {8}, {4, 5}, {2, 8}, {2, 4, 5}, {4, 8}, {5, 8}, {2, 4, 8}, {2, 5, 8}, {4, 5, 8}, {2, 4, 5, 8}]
Jika kita memberi label angka [2, 4, 5, 8]
dengan simbol [a, b, c, d]
dalam urutan yang meningkat, kita mendapatkan urutan abstrak berikut:
[{}, {a}, {b}, {c}, {a, b}, {a, c}, {d}, {b, c}, {a, d}, {a, b, c}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}]
Satu set angka positif yang bagus dapat memiliki urutan abstrak yang sama, atau yang berbeda. Misalnya, [3, 4, 8, 10]
adalah set yang bagus dengan urutan abstrak yang berbeda:
[{}, {a}, {b}, {a, b}, {c}, {d}, {a, c}, {b, c}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}]
Dalam tantangan ini, Anda harus menghitung jumlah urutan abstrak yang berbeda dari set n
angka positif yang bagus. Urutan ini adalah OEIS A009997 , dan nilai yang diketahui, mulai dari n=1
, adalah:
1, 1, 2, 14, 516, 124187, 214580603
Misalnya, untuk n=3
, berikut ini adalah dua urutan abstrak yang mungkin:
[{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}]
[{}, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}]
Sebab n=4
, berikut ini adalah 14 pemesanan abstrak yang mungkin, ditambah contoh yang bagus dengan pemesanan itu:
[{}, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, {d}, {a, d}, {b, d}, {a, b, d}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [8, 4, 2, 1]
[{}, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {d}, {a, b, c}, {a, d}, {b, d}, {a, b, d}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [10, 6, 3, 2]
[{}, {a}, {b}, {a, b}, {c}, {a, c}, {d}, {b, c}, {a, d}, {a, b, c}, {b, d}, {a, b, d}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [10, 7, 4, 2]
[{}, {a}, {b}, {a, b}, {c}, {a, c}, {d}, {a, d}, {b, c}, {a, b, c}, {b, d}, {a, b, d}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [8, 6, 4, 1]
[{}, {a}, {b}, {a, b}, {c}, {d}, {a, c}, {b, c}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [10, 8, 4, 3]
[{}, {a}, {b}, {a, b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [8, 7, 4, 2]
[{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [10, 4, 3, 2]
[{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {d}, {a, b, c}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [8, 4, 3, 2]
[{}, {a}, {b}, {c}, {a, b}, {a, c}, {d}, {b, c}, {a, d}, {a, b, c}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [8, 5, 4, 2]
[{}, {a}, {b}, {c}, {a, b}, {a, c}, {d}, {a, d}, {b, c}, {a, b, c}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [10, 7, 6, 2]
[{}, {a}, {b}, {c}, {a, b}, {d}, {a, c}, {b, c}, {a, d}, {b, d}, {a, b, c}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [8, 6, 4, 3]
[{}, {a}, {b}, {c}, {a, b}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [10, 8, 6, 3]
[{}, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c}, {a, d}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [8, 6, 5, 4]
[{}, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}], [7, 6, 5, 3]
Berikut ini bukan pemesanan abstrak yang valid:
{}, {a}, {b}, {c}, {d}, {a,b}, {e}, {a,c}, {b,c}, {a,d}, {a,e}, {b,d}, {b,e}, {c,d}, {a,b,c}, {a,b,d}, {c,e}, {d,e}, {a,b,e}, {a,c,d}, {a,c,e}, {b,c,d}, {b,c,e}, {a,d,e}, {b,d,e}, {a,b,c,d}, {c,d,e}, {a,b,c,e}, {a,b,d,e}, {a,c,d,e}, {b,c,d,e}, {a,b,c,d,e}
Pemesanan ini menyiratkan bahwa:
d < a + b
b + c < a + d
a + e < b + d
a + b + d < c + e
Menyimpulkan ketidaksetaraan ini memberi:
2a + 2b + c + 2d + e < 2a + 2b + c + 2d + e
yang merupakan kontradiksi. Kode Anda tidak boleh menghitung pemesanan ini. Contoh tandingan semacam itu pertama kali muncul di n=5
. Contoh dari makalah ini , contoh 2.5 di halaman 3.
Pemesanan ini tidak valid terlepas dari kenyataan yang A < B
menyiratkan bahwa A U C < B U C
, untuk setiap C
pemisahan dari A
dan B
.
Kode atau program Anda harus cukup cepat sehingga Anda dapat menjalankannya sampai selesai n=4
sebelum mengirimkannya.
Pengajuan dapat berupa program, fungsi, dll. Seperti biasa.
Celah standar dilarang, seperti biasa. Ini kode golf, jadi jawaban tersingkat dalam byte menang. Jangan ragu untuk mengajukan pertanyaan klarifikasi dalam komentar.