Tujuan: Diberikan matriks bilangan bulat positif , menghasilkan matriks sentrosimetri terkecil yang mengandung (matriks ini juga mengandung bilangan bulat tidak positif).M.
Matriks centrosymmetric adalah matriks persegi dengan simetri rotasi orde 2 — yaitu tetap matriks yang sama setelah diputar dua kali. Misalnya, matriks centrosymmetric memiliki elemen kiri atas sama dengan kanan bawah, dan elemen di atas pusat sama dengan yang di bawah pusat. Visualisasi yang bermanfaat dapat ditemukan di sini .
Lebih formal, diberikan matriks , menghasilkan matriks persegi sehingga adalah centrosymmetric dan , dan tidak ada matriks persegi lain sehingga .N N M ⊆ N K redup K < redup N
B A ⊆ B A i , j B i + i ′ , j + j ′ ( i ′ , j ′ ) adalah himpunan bagian dari (notasi: ) jika dan hanya jika setiap nilai muncul di indeks untuk beberapa pasang bilangan bulat .
Catatan : beberapa matriks memiliki beberapa solusi (misalnya [[3,3],[1,2]]
diselesaikan sebagai [[2,1,0],[3,3,3],[0,1,2]]
atau [[3,3,3],[1,2,1],[3,3,3]]
); Anda harus mengeluarkan setidaknya satu dari solusi yang valid.
Uji kasus
input
example output
[[1, 2, 3],
[4, 5, 6]]
[[1, 2, 3, 0],
[4, 5, 6, 0],
[0, 6, 5, 4],
[0, 3, 2, 1]]
[[9]]
[[9]]
[[9, 10]]
[[9, 10],
[10, 9]]
[[100, 200, 300]]
[[100, 200, 300],
[ 0, 0, 0],
[300, 200, 100]]
[[1, 2, 3],
[4, 5, 4]]
[[1, 2, 3],
[4, 5, 4]
[3, 2, 1]]
[[1, 2, 3],
[5, 6, 5],
[3, 2, 1]]
[[1, 2, 3],
[5, 6, 5],
[3, 2, 1]]
[[4, 5, 4],
[1, 2, 3]]
[[3, 2, 1],
[4, 5, 4],
[1, 2, 3]]
[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 9, 9, 9, 9, 9, 9, 9],
[1, 1, 1, 9, 9, 9, 9, 9, 9, 9],
[9, 9, 9, 9, 9, 9, 9, 9, 9, 9],
[9, 9, 9, 9, 9, 9, 9, 9, 9, 9],
[9, 9, 9, 9, 9, 9, 9, 9, 9, 9],
[9, 9, 9, 9, 9, 9, 9, 9, 9, 9],
[9, 9, 9, 9, 9, 9, 9, 9, 9, 9],
[9, 9, 9, 9, 9, 9, 9, 9, 9, 9],
[9, 9, 9, 9, 9, 9, 9, 9, 9, 1]]
[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9],
[1, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9],
[1, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9],
[9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9],
[9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9],
[9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9],
[9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9],
[9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9],
[9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9],
[9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 1],
[9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 1],
[9, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]