?::`}:("(!@
perfect:
{:{:;%"}
+puts; "
}zero: "
}else{(:
"negI" _~
""""""{{{"!@
Karakter Latin perfect puts zero else neg I
sebenarnya hanya komentar *.
yaitu jika input sempurna a 0
dicetak, sebaliknya -1
adalah.
Cobalah online!
* jadi ini atau ini bekerja juga ...
?::`}:("(!@ ?::`}:("(!@
: BEWARE :
{:{:;%"} {:{:;%"}
+ ; " +LAIR; "
} : " } OF : "
} {(: }MINO{(:
" " _~ "TAUR" _~
""""""{{{"!@ """"""{{{"!@
Bagaimana?
Dibawa sebagai input bilangan bulat positif n
dan menempatkan variabel akumulator -n
ke dalam tumpukan bantu, kemudian melakukan tes pembagian untuk setiap bilangan bulat dari n-1
bawah hingga, dan termasuk 1
, menambahkan apa pun yang membagi n
ke akumulator. Setelah ini selesai jika variabel akumulator adalah bukan-nol -1
adalah keluaran, jika tidak maka 0
adalah.
Ini ?::`}:(
hanya dieksekusi satu kali, pada awal eksekusi:
?::`}:( Main,Aux
? - take an integer from STDIN and place it onto Main [[n],[]]
: - duplicate top of Main [[n,n],[]]
: - duplicate top of Main [[n,n,n],[]]
` - negate top of Main [[n,n,-n],[]]
} - place top of Main onto Aux [[n,n],[-n]]
: - duplicate top of Main [[n,n,n],[-n]]
( - decrement top of Main [[n,n,n-1],[-n]]
Instruksi berikutnya "
,, adalah no-op, tetapi kami memiliki tiga instruksi tetangga sehingga kami bercabang sesuai dengan nilai di atas Main, nol membawa kita maju, sedangkan non-nol membawa kita benar.
Jika input tadi 1
kita maju karena bagian atas Main adalah nol:
(!@ Main,Aux
( - decrement top of Main [[1,1,-1],[-1]]
! - print top of Main, a -1
@ - exit the labyrinth
Tetapi jika input lebih besar dari 1
kita belok kanan karena bagian atas Main tidak nol:
:} Main,Aux
: - duplicate top of Main [[n,n,n-1,n-1],[-n]]
} - place top of Main onto Aux [[n,n,n-1],[-n,n-1]]
Pada titik ini kami memiliki cabang tiga tetangga, tetapi kami tahu n-1
tidak nol, jadi kami belok kanan ...
"% Main,Aux
" - no-op [[n,n,n-1],[-n,n-1]]
% - place modulo result onto Main [[n,n%(n-1)],[-n,n-1]]
- ...i.e we've got our first divisibility indicator n%(n-1), an
- accumulator, a=-n, and our potential divisor p=n-1:
- [[n,n%(n-1)],[a,p]]
Kami sekarang berada di cabang tiga tetangga lainnya di %
.
Jika hasilnya %
bukan nol, kita ke kiri untuk mengurangi pembagi potensial kita p=p-1
,, dan meninggalkan akumulator a
, seperti:
;:{(:""}" Main,Aux
; - drop top of Main [[n],[a,p]]
: - duplicate top of Main [[n,n],[a,p]]
{ - place top of Aux onto Main [[n,n,p],[a]]
- three-neighbour branch but n-1 is non-zero so we turn left
( - decrement top of Main [[n,n,p-1],[a]]
: - duplicate top of Main [[n,n,p-1,p-1],[a]]
"" - no-ops [[n,n,p-1,p-1],[a]]
} - place top of Main onto Aux [[n,n,p-1],[a,p-1]]
" - no-op [[n,n,p-1],[a,p-1]]
% - place modulo result onto Main [[n,n%(p-1)],[a,p-1]]
- ...and we branch again according to the divisibility
- of n by our new potential divisor, p-1
... tetapi jika hasil %
adalah nol (untuk lulus pertama hanya ketika n=2
) kita pergi langsung ke KEDUA menambahkan pembagi untuk akumulator kami, a=a+p
, DAN pengurangan potensi pembagi kami, p=p-1
:
;:{:{+}}""""""""{(:""} Main,Aux
; - drop top of Main [[n],[a,p]]
: - duplicate top of Main [[n,n],[a,p]]
{ - place top of Aux onto Main [[n,n,p],[a]]
: - duplicate top of Main [[n,n,p,p],[a]]
{ - place top of Aux onto Main [[n,n,p,p,a],[]]
+ - perform addition [[n,n,p,a+p],[]]
} - place top of Main onto Aux [[n,n,p],[a+p]]
} - place top of Main onto Aux [[n,n],[a+p,p]]
""""""" - no-ops [[n,n],[a+p,p]]
- a branch, but n is non-zero so we turn left
" - no-op [[n,n],[a+p,p]]
{ - place top of Aux onto Main [[n,n,p],[a+p]]
- we branch, but p is non-zero so we turn right
( - decrement top of Main [[n,n,p-1],[a+p]]
: - duplicate top of Main [[n,n,p-1,p-1],[a+p]]
"" - no-ops [[n,n,p-1,p-1],[a+p]]
} - place top of Main onto Aux [[n,n,p-1],[a+p,p-1]]
Pada titik ini jika p-1
masih nol kita belok kiri:
"% Main,Aux
" - no-op [[n,n,p-1],[a+p,p-1]]
% - modulo [[n,n%(p-1)],[a+p,p-1]]
- ...and we branch again according to the divisibility
- of n by our new potential divisor, p-1
... tetapi jika p-1
mencapai nol kita langsung menuju :
pada baris kedua labirin (Anda telah melihat semua instruksi sebelumnya, jadi saya meninggalkan deskripsi mereka dan hanya memberikan efeknya):
:":}"":({):""}"%;:{:{+}}"""""""{{{ Main,Aux
: - [[n,n,0,0],[a,0]]
" - [[n,n,0,0],[a,0]]
- top of Main is zero so we go straight
- ...but we hit the wall and so turn around
: - [[n,n,0,0,0],[a,0]]
} - [[n,n,0,0],[a,0,0]]
- top of Main is zero so we go straight
"" - [[n,n,0,0],[a,0,0]]
: - [[n,n,0,0,0],[a,0,0]]
( - [[n,n,0,0,-1],[a,0,0]]
{ - [[n,n,0,0,-1,0],[a,0]]
- top of Main is zero so we go straight
- ...but we hit the wall and so turn around
( - [[n,n,0,0,-1,-1],[a,0]]
: - [[n,n,0,0,-1,-1,-1],[a,0]]
"" - [[n,n,0,0,-1,-1,-1],[a,0]]
} - [[n,n,0,0,-1,-1],[a,0,-1]]
- top of Main is non-zero so we turn left
" - [[n,n,0,0,-1,-1],[a,0,-1]]
% - (-1)%(-1)=0 [[n,n,0,0,0],[a,0,-1]]
; - [[n,n,0,0],[a,0,-1]]
: - [[n,n,0,0,0],[a,0,-1]]
{ - [[n,n,0,0,0,-1],[a,0]]
: - [[n,n,0,0,0,-1,-1],[a,0]]
{ - [[n,n,0,0,0,-1,-1,0],[a]]
+ - [[n,n,0,0,0,-1,-1],[a]]
} - [[n,n,0,0,0,-1],[a,-1]]
} - [[n,n,0,0,0],[a,-1,-1]]
""""""" - [[n,n,0,0,0],[a,-1,-1]]
- top of Main is zero so we go straight
{ - [[n,n,0,0,0,-1],[a,-1]]
{ - [[n,n,0,0,0,-1,-1],[a]]
{ - [[n,n,0,0,0,-1,-1,a],[]]
Sekarang ini {
memiliki tiga instruksi tetangga, jadi ...
... jika a
nol, yang akan sempurna n
, maka kita langsung:
"!@ Main,Aux
" - [[n,n,0,0,0,-1,-1,a],[]]
- top of Main is a, which is zero, so we go straight
! - print top of Main, which is a, which is a 0
@ - exit the labyrinth
... jika a
tidak-nol, yang akan menjadi non-sempurna n
, maka kita belok kiri:
_~"!@ Main,Aux
_ - place a zero onto Main [[n,n,0,0,0,-1,-1,a,0],[]]
~ - bitwise NOT top of Main (=-1-x) [[n,n,0,0,0,-1,-1,a,-1],[]]
" - [[n,n,0,0,0,-1,-1,a,-1],[]]
- top of Main is NEGATIVE so we turn left
! - print top of Main, which is -1
@ - exit the labyrinth