BuildFun dan SolveFun
Yah, ini butuh waktu cukup lama dan saya tidak sepenuhnya yakin apakah pemecahnya curang atau tidak. Meskipun memiliki akses ke seluruh labirin sepanjang waktu, ia hanya melihat sel yang ada di dalamnya, dinding yang mengelilinginya, dan jika tidak ada dinding di antara mereka, sel-sel yang bersebelahan dengannya. Jika ini melanggar aturan, beri tahu saya dan saya akan mencoba mengubahnya.
Bagaimanapun, ini kodenya:
#Architect function
def BuildFun(size,seed):
#Initialise grid and ensure inputs are valid
if size<15:size=15
if size>50:size=50
if seed<4:seed=4
if seed>size:seed=size
grid=[]
for x in range(size):
gridbuilder=[]
for y in range(size):gridbuilder.append([0,1,1])
grid.append(gridbuilder)
coords=[0,0]
grid[0][0][0]=1
#Generate maze
while 1:
#Choose a preffered direction based on location in grid and seed
pref=((((coords[0]+coords[1]+2)*int(size/2))%seed)+(seed%(abs(coords[0]-coords[1])+1)))%4
#Find legal moves
opt=[]
if coords[0]>0:opt+=[0] if grid[coords[0]-1][coords[1]][0]==0 else []
if coords[1]<size-1:opt+=[1] if grid[coords[0]][coords[1]+1][0]==0 else []
if coords[0]<size-1:opt+=[2] if grid[coords[0]+1][coords[1]][0]==0 else []
if coords[1]>0:opt+=[3] if grid[coords[0]][coords[1]-1][0]==0 else []
#There are legal moves
if len(opt)>0:
moved=False
while not moved:
#Try to move in preffered direction
if pref in opt:
if pref==0:
coords[0]-=1
grid[coords[0]][coords[1]][0]=1
grid[coords[0]][coords[1]][2]=0
elif pref==1:
grid[coords[0]][coords[1]][1]=0
coords[1]+=1
grid[coords[0]][coords[1]][0]=1
elif pref==2:
grid[coords[0]][coords[1]][2]=0
coords[0]+=1
grid[coords[0]][coords[1]][0]=1
else:
coords[1]-=1
grid[coords[0]][coords[1]][0]=1
grid[coords[0]][coords[1]][1]=0
moved=True
#Change preferred direction if unable to move
else:
pref+=1
if pref==4:pref=0
#There aren't legal moves
else:
moved=False
#Return to a previously visited location
if not moved:
try:
if grid[coords[0]-1][coords[1]][0]==1 and grid[coords[0]-1][coords[1]][2]==0:
grid[coords[0]][coords[1]][0]=2
coords[0]-=1
moved=True
except:pass
if not moved:
try:
if grid[coords[0]][coords[1]+1][0]==1 and grid[coords[0]][coords[1]][1]==0:
grid[coords[0]][coords[1]][0]=2
coords[1]+=1
moved=True
except:pass
if not moved:
try:
if grid[coords[0]+1][coords[1]][0]==1 and grid[coords[0]][coords[1]][2]==0:
grid[coords[0]][coords[1]][0]=2
coords[0]+=1
moved=True
except:pass
if not moved:
try:
if grid[coords[0]][coords[1]-1][0]==1 and grid[coords[0]][coords[1]-1][1]==0:
grid[coords[0]][coords[1]][0]=2
coords[1]-=1
moved=True
except:pass
#Check if finished
fin=True
for x in grid:
for y in x:
if y[0]==0:
fin=False
break
if not fin:break
if fin:break
for x in grid:
for y in x:
y[0]=0
#Find positions for start and finish such that the route between them is as long as possible
lsf=[[0,0],[0,0],0]
for y in range(size):
for x in range(size):
#Check all start positions
lengths=[]
coords=[[y,x,4,0]]
while len(coords)>0:
#Spread tracers out from start to the rest of the maze
for coord in coords:
opt=[]
if coord[0]>0:opt+=[0] if grid[coord[0]-1][coord[1]][2]==0 else []
opt+=[1] if grid[coord[0]][coord[1]][1]==0 else []
opt+=[2] if grid[coord[0]][coord[1]][2]==0 else []
if coord[1]>0:opt+=[3] if grid[coord[0]][coord[1]-1][1]==0 else []
try:opt.remove(coord[2])
except:pass
#Dead end, tracer dies and possible end point is recorded along with length
if len(opt)==0:
lengths.append([coord[0],coord[1],coord[3]])
coords.remove(coord)
else:
#Create more tracers at branch points
while len(opt)>1:
if opt[0]==0:coords.append([coord[0]-1,coord[1],2,coord[3]+1])
elif opt[0]==1:coords.append([coord[0],coord[1]+1,3,coord[3]+1])
elif opt[0]==2:coords.append([coord[0]+1,coord[1],0,coord[3]+1])
else:coords.append([coord[0],coord[1]-1,1,coord[3]+1])
del opt[0]
if opt[0]==0:
coord[0]-=1
coord[2]=2
coord[3]+=1
elif opt[0]==1:
coord[1]+=1
coord[2]=3
coord[3]+=1
elif opt[0]==2:
coord[0]+=1
coord[2]=0
coord[3]+=1
else:
coord[1]-=1
coord[2]=1
coord[3]+=1
#Find furthest distance and, if it's longer than the previous one, the start/end positions get updated
lengths=sorted(lengths,key=lambda x:x[2],reverse=True)
if lengths[0][2]>lsf[2]:lsf=[[y,x],[lengths[0][0],lengths[0][1]],lengths[0][2]]
#Find number of walls and output maze
w=draw(grid,size,lsf[0],lsf[1])
#Output maze information
print('Start = '+str(lsf[0]))
print('End = '+str(lsf[1]))
print('Distance = '+str(lsf[2]))
print('Walls = '+str(w))
print('Score = '+str(float(lsf[2])/float(w))[:5])
#Convert array grid to binary strings horizontal and vertical
horizontal=vertical=''
for y in range(size):
for x in range(size-1):vertical+=str(grid[y][x][1])
for y in range(size-1):
for x in range(size):horizontal+=str(grid[y][x][2])
#Save maze information to text file for use with SolveFun
save=open('Maze.txt','w')
save.write(str(size)+'\n'+str(lsf[0][0])+' '+str(lsf[0][1])+'\n'+str(lsf[1][0])+' '+str(lsf[1][1])+'\n'+horizontal+'\n'+vertical)
save.close()
#Solver function
def SolveFun():
try:
#Get maze information from text file
save=open('Maze.txt','r')
data=save.readlines()
save.close()
size=int(data[0])
s=data[1].rsplit(' ')
start=[int(s[0]),int(s[1])]
e=data[2].rsplit(' ')
end=[int(e[0]),int(e[1])]
horizontal=data[3].rstrip('\n')
vertical=data[4]
#Build maze from information
grid=[]
for y in range(size):
grid.append([])
for x in range(size):
grid[y].append([0,1,1])
for y in range(size):
for x in range(size-1):
grid[y][x][1]=int(vertical[y*(size-1)+x])
for y in range(size-1):
for x in range(size):
grid[y][x][2]=int(horizontal[y*size+x])
path=''
cpath=''
bs=0
pos=start[:]
grid[pos[0]][pos[1]][0]=1
while pos!=end:
#Want to move in direction of finish
if end[0]<pos[0] and pos[0]-end[0]>=abs(pos[1]-end[1]):pref=0
elif end[1]>pos[1] and end[1]-pos[1]>=abs(pos[0]-end[0]):pref=1
elif end[0]>pos[0] and end[0]-pos[0]>=abs(pos[1]-end[1]):pref=2
else:pref=3
#Find legal moves
opt=[]
if pos[0]>0:
if grid[pos[0]-1][pos[1]][2]==0:opt+=[0]if grid[pos[0]-1][pos[1]][0]==0 else[]
if pos[1]>0:
if grid[pos[0]][pos[1]-1][1]==0:opt+=[3]if grid[pos[0]][pos[1]-1][0]==0 else[]
if grid[pos[0]][pos[1]][2]==0:opt+=[2]if grid[pos[0]+1][pos[1]][0]==0 else[]
if grid[pos[0]][pos[1]][1]==0:opt+=[1]if grid[pos[0]][pos[1]+1][0]==0 else[]
if len(opt)>0:
moved=False
while not moved:
#Try to move in preferred direction
if pref in opt:
if pref==0:
pos[0]-=1
path+='0'
cpath+='0'
elif pref==1:
pos[1]+=1
path+='1'
cpath+='1'
elif pref==2:
pos[0]+=1
path+='2'
cpath+='2'
else:
pos[1]-=1
path+='3'
cpath+='3'
grid[pos[0]][pos[1]][0]=1
moved=True
#Change preferred direction by 1
else:
pref=(pref+1)%4
#No legal moves, backtrack
else:
bs+=1
grid[pos[0]][pos[1]][0]=2
if int(cpath[len(cpath)-1])==0:
pos[0]+=1
path+='2'
elif int(cpath[len(cpath)-1])==1:
pos[1]-=1
path+='3'
elif int(cpath[len(cpath)-1])==2:
pos[0]-=1
path+='0'
else:
pos[1]+=1
path+='1'
cpath=cpath[:len(cpath)-1]
#Output maze with solution as well as total steps and wasted steps
draw(grid,size,start,end)
print('\nPath taken:')
print(str(len(path))+' steps')
print(str(bs)+' backsteps')
print(str(bs*2)+' wasted steps')
except:print('Could not find maze')
def draw(grid,size,start,end):
#Build output in string d
d=' '
for x in range(size):d+=' '+str(x)[0]
d+='\n '
for x in range(size):d+=' ' if len(str(x))==1 else ' '+str(x)[1]
d+='\n '+'_'*(size*2-1)
w=0
for y in range(size):
d+='\n'+str(y)+' |' if len(str(y))==1 else '\n'+str(y)+' |'
for x in range(size):
if grid[y][x][2]:
if start==[y,x]:d+=UL.S+'S'+UL.E
elif end==[y,x]:d+=UL.S+'F'+UL.E
elif grid[y][x][0]==1:d+=UL.S+'*'+UL.E
else:d+='_'
w+=1
else:
if start==[y,x]:d+='S'
elif end==[y,x]:d+='F'
elif grid[y][x][0]==1:d+='*'
else:d+=' '
if grid[y][x][1]:
d+='|'
w+=1
else:d+=' '
#Output maze and return number of walls
print(d)
w-=size*2
return w
#Underlines text
class UL:
S = '\033[4m'
E = '\033[0m'
Saya menyadari bahwa ini sangat panjang dan tidak mudah dibaca, tapi saya malas jadi begini caranya.
BuildFun
Arsiteknya, BuildFun, adalah program penghasil labirin yang cukup sederhana yang akan selalu membuat labirin 'sempurna' (satu tanpa loop dan di mana dua titik akan selalu memiliki tepat satu jalur di antara mereka). Ini mendasarkan logikanya dari input benih yang berarti bahwa labirin yang dihasilkan adalah pseudo-acak dengan apa yang sering tampak sebagai pola berulang dan, dengan benih dan ukuran yang sama, labirin yang sama akan dibuat.
Setelah labirin dihasilkan, program akan berusaha memaksimalkan skor labirin dengan mencari titik awal dan titik akhir yang menghasilkan jalur terpanjang di antara mereka. Untuk melakukan ini, ia berjalan melalui setiap titik awal, menyebar pelacak untuk menemukan titik akhir terjauh dari itu, dan memilih kombinasi dengan jalur terpanjang.
Setelah ini, ia menarik labirin, menghitung dinding dan menampilkan informasi labirin. Ini adalah titik awal, titik akhir, jarak di antara mereka, jumlah dinding dan skor. Ini juga memformat informasi ini menjadi gaya yang dijelaskan di atas untuk ukuran, mulai dan akhir, dinding horizontal dan dinding vertikal dan menyimpannya ke dalam file teks yang disebut Maze.txt untuk digunakan nanti.
SolveFun
Solver, SolveFun, menggunakan file teks Maze.txt sebagai input dan bekerja dengan cara yang sangat mirip dengan arsitek. Untuk setiap gerakan, ia akan memilih arah yang ingin ia tempuh berdasarkan posisi relatifnya sampai akhir dan kemudian ia akan melihat dinding yang mengelilinginya. Jika dinding tidak ada di sana, itu akan memeriksa untuk melihat apakah telah di sel yang berdekatan dengannya dan, jika tidak, itu akan ditambahkan sebagai opsi yang memungkinkan. Kemudian akan bergerak ke arah yang paling dekat dengan arah pilihannya asalkan memiliki opsi. Jika tidak memiliki opsi, ia akan mundur hingga tersedia. Ini berlanjut sampai mencapai akhir.
Saat bergerak, ia mencatat jalur yang diambilnya di jalur variabel yang digunakan di akhir untuk menampilkan jumlah langkah. Itu juga mencatat berapa kali harus mundur digunakan untuk menghitung langkah-langkah yang terbuang pada akhirnya. Ketika mencapai akhir, itu akan menampilkan labirin dengan jalur terpendek dari awal hingga akhir ditandai dengan *
s.
Cara Menjalankan
Karena metode menghasilkan labirin (yang termasuk menggarisbawahi karakter tertentu), ini harus dijalankan dari baris perintah dalam formulir
python -c 'import filename;filename.BuildFun(Size, Seed)'
dan
python -c 'import filename;filename.SolveFun()'
di mana Ukuran adalah bilangan bulat antara 15 dan 50 (inklusif) dan Seed adalah bilangan bulat antara 4 dan Ukuran (inklusif).