Berikut adalah campuran dari jenis radix Alexandru dengan pivot cerdas berulir Zjarek. Kompilasi dengan
g++ -std=c++0x -pthread -O3 -march=native sorter_gaussian_radix.cxx -o sorter_gaussian_radix
Anda dapat mengubah ukuran radix dengan mendefinisikan LANGKAH (misalnya, tambahkan -DSTEP = 11). Saya menemukan yang terbaik untuk laptop saya adalah 8 (default).
Secara default, ini membagi masalah menjadi 4 bagian dan menjalankannya pada beberapa utas. Anda dapat mengubahnya dengan mengirimkan parameter kedalaman ke baris perintah. Jadi, jika Anda memiliki dua inti, jalankan sebagai
sorter_gaussian_radix 50000000 1
dan jika Anda memiliki 16 core
sorter_gaussian_radix 50000000 4
Kedalaman maks sekarang adalah 6 (64 utas). Jika Anda memasukkan terlalu banyak level, Anda hanya akan memperlambat kodenya.
Satu hal yang juga saya coba adalah radix sort dari perpustakaan Intel Performance Primitives (IPP). Implementasi Alexandru benar-benar merusak IPP, dengan IPP sekitar 30% lebih lambat. Variasi itu juga termasuk di sini (dikomentari).
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <ctime>
#include <iostream>
#include <thread>
#include <vector>
#include <boost/cstdint.hpp>
// #include "ipps.h"
#ifndef STEP
#define STEP 8
#endif
const int step = STEP;
const int start_step=24;
const int num_steps=(64-start_step+step-1)/step;
int size;
double *dbuf, *copy;
clock_t c1, c2, c3, c4, c5;
const double distrib[]={-2.15387,
-1.86273,
-1.67594,
-1.53412,
-1.4178,
-1.31801,
-1.22986,
-1.15035,
-1.07752,
-1.00999,
-0.946782,
-0.887147,
-0.830511,
-0.776422,
-0.724514,
-0.67449,
-0.626099,
-0.579132,
-0.53341,
-0.488776,
-0.445096,
-0.40225,
-0.36013,
-0.318639,
-0.27769,
-0.237202,
-0.197099,
-0.157311,
-0.11777,
-0.0784124,
-0.0391761,
0,
0.0391761,
0.0784124,
0.11777,
0.157311,
0.197099,
0.237202,
0.27769,
0.318639,
0.36013,
0.40225,
0.445097,
0.488776,
0.53341,
0.579132,
0.626099,
0.67449,
0.724514,
0.776422,
0.830511,
0.887147,
0.946782,
1.00999,
1.07752,
1.15035,
1.22986,
1.31801,
1.4178,
1.53412,
1.67594,
1.86273,
2.15387};
class Distrib
{
const int value;
public:
Distrib(const double &v): value(v) {}
bool operator()(double a)
{
return a<value;
}
};
void recursive_sort(const int start, const int end,
const int index, const int offset,
const int depth, const int max_depth)
{
if(depth<max_depth)
{
Distrib dist(distrib[index]);
const int middle=std::partition(dbuf+start,dbuf+end,dist) - dbuf;
// const int middle=
// std::partition(dbuf+start,dbuf+end,[&](double a)
// {return a<distrib[index];})
// - dbuf;
std::thread lower(recursive_sort,start,middle,index-offset,offset/2,
depth+1,max_depth);
std::thread upper(recursive_sort,middle,end,index+offset,offset/2,
depth+1,max_depth);
lower.join(), upper.join();
}
else
{
// ippsSortRadixAscend_64f_I(dbuf+start,copy+start,end-start);
c1=clock();
double *dbuf_local(dbuf), *copy_local(copy);
boost::uint64_t mask = (1 << step) - 1;
int cnt[num_steps][mask+1];
boost::uint64_t *ibuf = reinterpret_cast<boost::uint64_t *> (dbuf_local);
for(int i=0;i<num_steps;++i)
for(uint j=0;j<mask+1;++j)
cnt[i][j]=0;
for (int i = start; i < end; i++)
{
for (int w = start_step, v = 0; w < 64; w += step, v++)
{
int p = (~ibuf[i] >> w) & mask;
(cnt[v][p])++;
}
}
c2=clock();
std::vector<int> sum(num_steps,0);
for (uint i = 0; i <= mask; i++)
{
for (int w = start_step, v = 0; w < 64; w += step, v++)
{
int tmp = sum[v] + cnt[v][i];
cnt[v][i] = sum[v];
sum[v] = tmp;
}
}
c3=clock();
for (int w = start_step, v = 0; w < 64; w += step, v++)
{
ibuf = reinterpret_cast<boost::uint64_t *>(dbuf_local);
for (int i = start; i < end; i++)
{
int p = (~ibuf[i] >> w) & mask;
copy_local[start+((cnt[v][p])++)] = dbuf_local[i];
}
std::swap(copy_local,dbuf_local);
}
// Do the last set of reversals
for (int p = start; p < end; p++)
if (dbuf_local[p] >= 0.)
{
std::reverse(dbuf_local+p, dbuf_local + end);
break;
}
c4=clock();
// Insertion sort
for (int i = start+1; i < end; i++) {
double value = dbuf_local[i];
if (value < dbuf_local[i - 1]) {
dbuf_local[i] = dbuf_local[i - 1];
int p = i - 1;
for (; p > 0 && value < dbuf_local[p - 1]; p--)
dbuf_local[p] = dbuf_local[p - 1];
dbuf_local[p] = value;
}
}
c5=clock();
}
}
int main(int argc, char **argv) {
size = atoi(argv[1]);
copy = new double[size];
dbuf = new double[size];
FILE *f = fopen("gaussian.dat", "r");
fread(dbuf, size, sizeof(double), f);
fclose(f);
clock_t c0 = clock();
const int max_depth= (argc > 2) ? atoi(argv[2]) : 2;
// ippsSortRadixAscend_64f_I(dbuf,copy,size);
recursive_sort(0,size,31,16,0,max_depth);
if(num_steps%2==1)
std::swap(dbuf,copy);
// for (int i=0; i<size-1; i++){
// if (dbuf[i]>dbuf[i+1])
// std::cout << "BAD "
// << i << " "
// << dbuf[i] << " "
// << dbuf[i+1] << " "
// << "\n";
// }
std::cout << "Finished after "
<< (double) (c1 - c0) / CLOCKS_PER_SEC << " "
<< (double) (c2 - c1) / CLOCKS_PER_SEC << " "
<< (double) (c3 - c2) / CLOCKS_PER_SEC << " "
<< (double) (c4 - c3) / CLOCKS_PER_SEC << " "
<< (double) (c5 - c4) / CLOCKS_PER_SEC << " "
<< "\n";
// delete [] dbuf;
// delete [] copy;
return 0;
}
EDIT : Saya menerapkan perbaikan cache Alexandru, dan itu mencukur sekitar 30% dari waktu di mesin saya.
EDIT : Ini mengimplementasikan semacam rekursif, sehingga harus bekerja dengan baik pada mesin 16 core Alexandru. Itu juga menggunakan perbaikan terakhir Alexandru dan menghapus salah satu yang sebaliknya. Bagi saya, ini memberikan peningkatan 20%.
EDIT : Memperbaiki bug tanda yang menyebabkan inefisiensi ketika ada lebih dari 2 core.
EDIT : Menghapus lambda, sehingga akan dikompilasi dengan versi gcc yang lebih lama. Ini termasuk variasi kode IPP yang dikomentari. Saya juga memperbaiki dokumentasi untuk berjalan pada 16 core. Sejauh yang saya tahu, ini adalah implementasi tercepat.
EDIT : Memperbaiki bug ketika LANGKAH tidak 8. Meningkatkan jumlah maksimum utas menjadi 64. Menambahkan beberapa info waktu.