Meniru CPU Intel 8086


157

Catatan: Beberapa jawaban telah tiba. Pertimbangkan untuk membatalkan jawaban yang lebih baru juga.


The 8086 adalah Intel mikroprosesor x86 pertama. Tugas Anda adalah menulis emulator untuk itu. Karena ini relatif maju, saya ingin membatasinya:

  • Hanya opcode berikut yang perlu diimplementasikan:
    • mov, push, pop, xchg
    • tambahkan, adc, sub, sbb, cmp, dan, atau, xor
    • inc, dec
    • panggilan, ret, jmp
    • jb, jz, jbe, js, jnb, jnz, jnbe, jns
    • stc, clc
    • hlt, tidak
  • Sebagai akibatnya, Anda hanya perlu menghitung flag carry, zero, dan sign
  • Jangan menerapkan segmen. Asumsikan cs = ds = ss = 0.
  • Tidak ada awalan
  • Tidak ada jenis interupsi atau port IO
  • Tidak ada fungsi string
  • Tidak ada opcode dua byte (0F ..)
  • Tidak ada aritmatika floating point
  • (Jelas) tidak ada hal 32-bit, sse, mmx, ... apa pun yang belum ditemukan pada tahun 1979
  • Anda tidak perlu menghitung siklus atau melakukan pengaturan waktu apa pun

Mulai dengan ip = 0dan sp = 100h.


Input: Emulator Anda harus mengambil program biner dalam format apa pun yang Anda suka sebagai input (baca dari file, array yang telah ditentukan, ...) dan muat ke dalam memori di alamat 0.

Output: RAM video dimulai pada alamat 8000h, setiap byte adalah satu (ASCII-) karakter. Emulasi layar 80x25 ke konsol. Perlakukan nol byte seperti spasi.

Contoh:

08000   2E 2E 2E 2E 2E 2E 2E 2E 2E 00 00 00 00 00 00 00   ................
08010   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ................
08020   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ................
08030   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ................
08040   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ................
08050   48 65 6C 6C 6F 2C 20 77 6F 72 6C 64 21 00 00 00   Hello,.world!...

Catatan: Ini sangat mirip dengan mode video nyata, yang biasanya pada 0xB8000 dan memiliki byte per karakter untuk warna.

Kriteria menang:

  • Semua instruksi yang disebutkan perlu diimplementasikan
  • Saya membuat program uji uncommented ( tautan , sumber nasm ) yang harus berjalan dengan baik. Ini menghasilkan

    .........                                                                       
    Hello, world!                                                                   
    0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ 
    
    
    ################################################################################
    ##                                                                            ##
    ##  0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987                          ##
    ##                                                                            ##
    ##  0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400     ##
    ##                                                                            ##
    ##  2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97    ##
    ##                                                                            ##
    ##                                                                            ##
    ##                                                                            ##
    ##                                                                            ##
    ##                                                                            ##
    ##                                                                            ##
    ##                                                                            ##
    ##                                                                            ##
    ##                                                                            ##
    ##                                                                            ##
    ##                                                                            ##
    ##                                                                            ##
    ################################################################################
    
  • Saya tidak yakin apakah ini seharusnya codegolf; ini semacam tugas yang sulit, jadi pengajuan apa pun akan memenangkan banyak upvotes. Tolong beri komentar anda.

Berikut ini beberapa tautan untuk membantu Anda dalam tugas ini:

Ini adalah entri pertama saya ke platform ini. Jika ada kesalahan, harap tunjukkan; jika saya melewatkan detail, tanyakan saja.


5
terlalu maju untuk saya, tetapi saya sangat ingin melihat jawaban untuk pertanyaan ini karena itu adalah hal yang paling saya minati! Saya mungkin akan melakukannya nanti jika saya merasa sangat masokistis ...
Chris Browne

3
@ChrisBrowne semoga sukses karena menjadi masokis! Saya saat ini mengubah 8086 saya menjadi 80386 dan telah belajar banyak dari proyek ini sejauh ini.
salin

2
+1 + favorit ... saya tidak dapat mulai mengungkapkan perasaan yang saya dapatkan ketika saya melihat pertanyaan ini.
ixtmixilix

2
@copy Tidak pernah ada kata terlambat untuk membuat kompetisi golf untuk setiap pasangan bahasa / host
Yauhen Yakimovich

2
@ MartinBüttner Tentu, pertanyaannya lebih tua dari tag itu dan pada dasarnya menjadi kontes popularitas
salin

Jawaban:


84

Jangan ragu untuk garpu dan golf: https://github.com/julienaubert/py8086

Hasil Saya juga menyertakan debugger interaktif.

CF:0 ZF:0 SF:0 IP:0x0000
AX:0x0000  CX:0x0000  DX:0x0000  BX:0x0000  SP:0x0100  BP:0x0000  SI:0x0000  DI:0x0000
AL:  0x00  CL:  0x00  DL:  0x00  BL:  0x00  AH:  0x00  CH:  0x00  DH:  0x00  BH:  0x00
stack: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 ...
cmp SP, 0x100
[Enter]:step [R]:run [B 0xadr]:add break [M 0xadr]:see RAM [Q]:quit

B 0x10
M 0x1
M 0x1: 0xfc 0x00 0x01 0x74 0x01 0xf4 0xbc 0x00 0x10 0xb0 0x2e 0xbb ...
R

CF:0 ZF:0 SF:1 IP:0x0010
AX:0x002e  CX:0x0000  DX:0x0000  BX:0xffff  SP:0x1000  BP:0x0000  SI:0x0000  DI:0x0000
AL:  0x2e  CL:  0x00  DL:  0x00  BL:  0xff  AH:  0x00  CH:  0x00  DH:  0x00  BH:  0x00
stack: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 ...
cmp BX, 0xffff
[Enter]:step [R]:run [B 0xadr]:add break [M 0xadr]:see RAM [Q]:quit

Ada tiga file: emu8086.py (wajib) console.py (opsional untuk output display), disasm.py (opsional, untuk mendapatkan daftar asm dalam codegolf).

Untuk menjalankan dengan tampilan (catatan menggunakan kutukan):

python emu8086.py 

Untuk dijalankan dengan debugger interaktif:

python emu8086.py a b

Untuk dijalankan dengan "debugger" non-interaktif:

python emu8086.py a

Program " codegolf " harus berada di direktori yang sama.

emu8086.py

console.py

disasm.py

Di github


9
Itu adalah posting pertama dari Code Golf. +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 ...
Dillon Cower

@ DC terima kasih :) adalah tantangan yang menyenangkan!
ja

1
Masih tidak percaya seseorang benar-benar melakukan ini :-) Kerja bagus!
salin

1
Luar biasa! Selamat! Berapa banyak garis itu pada akhirnya?
Will Lp

59

Haskell, 256 234 196 baris

Saya sudah punya pekerjaan dalam proses ini untuk beberapa waktu, saya berniat untuk memolesnya sedikit lebih sedikit sebelum penerbitan, tetapi sekarang kesenangan itu secara resmi dimulai, tidak ada gunanya merahasiakannya lagi. Saya perhatikan ketika mengekstraksi bahwa panjangnya persis 256 baris, jadi saya kira itu berada pada titik "luar biasa" dari keberadaannya.

Apa yang ada di: hampir tidak cukup dari instruksi 8086 yang diatur untuk menjalankan contoh biner dengan sempurna. Kode modifikasi diri didukung. (prefetch: zero bytes)
Ironisnya, iterasi cukup pertama dari kode lebih panjang dan kurang didukung rentang opcode. Refactoring akhirnya bermanfaat baik untuk panjang kode dan cakupan opcode.

Apa yang keluar: jelas, segmen, awalan, dan opcode multibyte, interupsi, port I / O, operasi string, dan FP. Awalnya saya memang mengikuti PUSH SPperilaku asli , tetapi harus menghentikannya setelah beberapa kali pengulangan.

Hasil flag carry mungkin sangat kacau dalam beberapa kasus ADC/ SBB.

Bagaimanapun, ini kodenya:

------------------------------------------------------------
-- Imports

-- They're the only lines I allow to go over 80 characters.
-- For the simple reason the code would work just as well without the
-- actual symbol list, but I like to keep it up to date to better
-- grasp my dependency graph.

import           Control.Monad.Reader      (ReaderT,runReaderT,ask,lift,forever,forM,when,void)
import           Control.Monad.ST          (ST,runST)
import           Control.Monad.Trans.Maybe (MaybeT,runMaybeT)
import           Data.Array.ST             (STUArray,readArray,writeArray,newArray,newListArray)
import           Data.Bits                 (FiniteBits,(.&.),(.|.),xor,shiftL,shiftR,testBit,finiteBitSize)
import           Data.Bool                 (bool)
import qualified Data.ByteString as B      (unpack,getContents)
import           Data.Char                 (chr,isPrint) -- for screen dump
import           Data.Int                  (Int8)
import           Data.STRef                (STRef,newSTRef,readSTRef,writeSTRef,modifySTRef)
import           Data.Word                 (Word8,Word16)

------------------------------------------------------------
-- Bytes and Words
-- Bytes are 8 bits.  Words are 16 bits.  Addressing is little-endian.

-- Phantom types.  Essentially (only?) used for the ALU
byte = undefined :: Word8
word = undefined :: Word16

-- Byte to word conversion
byteToWordSE = (fromIntegral :: Int8 -> Word16) .
               (fromIntegral :: Word8 -> Int8)

-- Two-bytes to word conversion
concatBytes :: Word8 -> Word8 -> Word16
concatBytes l h = fromIntegral l .|. (fromIntegral h `shiftL` 8)

-- Word to two bytes conversion
wordToByteL,wordToByteH :: Word16 -> Word8
wordToByteL = fromIntegral
wordToByteH = fromIntegral . (`shiftR` 8)

-- A Place is an lvalue byte or word.  In absence of I/O ports, this
-- means RAM or register file.  This type synonym is not strictly
-- needed, but without it it's unclear I could keep the alu function
-- type signature under twice 80 characters, so why not keep this.
type Place s = (STUArray s Word16 Word8,Word16)

-- Read and write, byte or word, from RAM or register file

class (Ord a,FiniteBits a,Num a) => Width a where
  readW  :: Place s ->      MonadCPU s a
  writeW :: Place s -> a -> MonadCPU s ()

instance Width Word8 where
  readW  =  liftST    . uncurry readArray
  writeW = (liftST .) . uncurry writeArray

instance Width Word16 where
  readW (p,a) = concatBytes <$> readW (p,a) <*> readW (p,a+1)
  writeW (p,a) val = do
    writeW (p,a)   $ wordToByteL val
    writeW (p,a+1) $ wordToByteH val

------------------------------------------------------------
-- CPU object

-- The actual CPU state.  Yeah, I obviously don't have all flags in! :-D
data CPU s = CPU { ram  :: STUArray s Word16 Word8
                 , regs :: STUArray s Word16 Word8
                 , cf :: STRef s Bool
                 , zf :: STRef s Bool
                 , sf :: STRef s Bool }

newCPU rawRam = do ramRef <- newListArray (0,0xFFFF) rawRam
                   regFile <- newArray (0,17) 0
                   cf <- newSTRef False
                   zf <- newSTRef False
                   sf <- newSTRef False
                   return $ CPU ramRef regFile cf zf sf

-- Register addresses within the register file.  Note odd placement
-- for BX and related.  Also note the 16-bit registers have a wider
-- pitch.  IP was shoehorned in recently, it doesn't really need an
-- address here, but it made other code shorter, so that's that.

-- In the 8-bit subfile, only regAl is used in the code (and it's 0,
-- so consider that a line I could totally have skipped)
[regAl,regAh,regCl,regCh,regDl,regDh,regBl,regBh] = [0..7]

-- In the 16-bit file, they're almost if not all referenced.  8086
-- sure is clunky.
[regAx,regCx,regDx,regBx,regSp,regBp,regSi,regDi,regIp] = [0,2..16]

-- These functions look like I got part of the Lens intuition
-- independently, come to look at it after the fact.  Cool :-)
readCpu  ext   = liftST .      readSTRef    . ext =<< ask
writeCpu ext f = liftST . flip writeSTRef f . ext =<< ask

-- It looks like the only operations IP can receive are relative moves
-- (incrIP function below) and a single absolute set: RET.  I deduce
-- only short jumps, not even near, were in the spec.
incrIP i = do old <- readReg regIp
              writeReg regIp (old + i)
              return old

-- Read next instruction.  Directly from RAM, so no pipeline prefetch.
readInstr8 = incrIP 1 >>= readRam
readInstr16 = concatBytes <$> readInstr8 <*> readInstr8

-- RAM/register file R/W specializers
readReg  reg      = ask >>= \p -> readW  (regs p,reg)
readRam  addr     = ask >>= \p -> readW  (ram p ,addr)
writeReg reg val  = ask >>= \p -> writeW (regs p,reg)  val
writeRam addr val = ask >>= \p -> writeW (ram p ,addr) val

-- I'm not quite sure what those do anymore, or why they're separate.
decodeReg8  n = fromIntegral $ (n `shiftL` 1) .|. (n `shiftR` 2)
decodeReg16 n = fromIntegral $  n `shiftL` 1
readDecodedReg8 = readReg . decodeReg8
readDecodedReg16 = readReg . decodeReg16

-- The monad type synonym make type signatures easier :-(
type MonadCPU s = MaybeT (ReaderT (CPU s) (ST s))

-- Specialized liftST, because the one from Hackage loses the
-- parameter, and I need it to be able to qualify Place.
liftST :: ST s a -> MonadCPU s a
liftST = lift . lift

------------------------------------------------------------
-- Instructions

-- This is arguably the core secret of the 8086 architecture.
-- See statement links for actual explanations.
readModRM = do
  modRM <- readInstr8
  let mod   =  modRM           `shiftR` 6
      opReg = (modRM .&. 0x38) `shiftR` 3
      rm    =  modRM .&. 0x07
  cpu <- ask
  operand <- case mod of
               0 -> do
                 addr <- case rm of
                           1 -> (+) <$> readReg regBx <*> readReg regDi
                           2 -> (+) <$> readReg regBp <*> readReg regSi
                           6 -> readInstr16
                           7 -> readReg regBx
                 return (ram cpu,addr)
               2 -> do
                 addr <- case rm of
                           5 -> (+) <$> readReg regDi <*> readInstr16
                           7 -> (+) <$> readReg regBx <*> readInstr16
                 return (ram cpu,addr)
               3 -> return (regs cpu,2*fromIntegral rm)
  return (operand,opReg,opReg)

-- Stack operations.  PUSH by value (does NOT reproduce PUSH SP behavior)
push16 val = do
  sp <- subtract 2 <$> readReg regSp
  writeReg regSp sp
  writeRam sp (val :: Word16)
pop16 = do
  sp <- readReg regSp
  val <- readRam sp
  writeReg regSp (sp+2)
  return (val :: Word16)

-- So, yeah, JMP seems to be relative (short) only.  Well, if that's enough…
jump cond = when cond . void . incrIP . byteToWordSE =<< readInstr8

-- The ALU.  The most complicated type signature in this file.  An
-- initial argument as a phantom type I tried to get rid of and
-- failed.
alu :: Width w => w -> MonadCPU s w -> MonadCPU s w -> Place s
    -> (w -> w -> MonadCPU s (Bool,Maybe Bool,w)) -> MonadCPU s ()
alu _ a b r op = do
  (rw,c,v) <- a >>= (b >>=) . op
  when rw $ writeW r v
  maybe (return ()) (writeCpu cf) c
  writeCpu zf (v == 0)
  writeCpu sf (testBit v (finiteBitSize v - 1))
decodeALU 0 = \a b -> return (True, Just (a >= negate b),       a   +   b)
decodeALU 1 = \a b -> return (True, Just False,                 a  .|.  b)
decodeALU 2 = \a b -> bool 0 1 <$> readCpu cf >>= \c ->
                      return (True, Just (a >= negate (b + c)), a + b + c)
decodeALU 3 = \a b -> bool 0 1 <$> readCpu cf >>= \c ->
                      return (True, Just (a < b + c),           a - b - c)
decodeALU 4 = \a b -> return (True, Just False,                 a  .&.  b)
decodeALU 5 = \a b -> return (True, Just (a <= b),              a   -   b)
decodeALU 6 = \a b -> return (True, Just False,                 a `xor` b)
decodeALU 7 = \a b -> return (False,Just (a <= b),              a   -   b)
opIncDec :: Width w => w -> w -> MonadCPU s (Bool,Maybe Bool,w)
opIncDec    = \a b -> return (True, Nothing,                    a   +   b)

-- Main iteration: process one instuction
-- That's the rest of the meat, but that part's expected.
processInstr = do
  opcode <- readInstr8
  regs <- regs <$> ask
  let zReg = (regs,decodeReg16 (opcode .&. 0x07))
  if opcode < 0x40 then -- no segment or BCD
    let aluOp = (opcode .&. 0x38) `shiftR` 3 in case opcode .&. 0x07 of
    0 -> do
      (operand,reg,_) <- readModRM
      alu byte (readW operand) (readDecodedReg8 reg) operand (decodeALU aluOp)
    1 -> do
      (operand,reg,_) <- readModRM
      alu word (readW operand) (readDecodedReg16 reg) operand (decodeALU aluOp)
    4 -> alu byte (readReg regAl) readInstr8 (regs,regAl) (decodeALU aluOp)
  else case opcode .&. 0xF8 of -- 16-bit (mostly) reg ops
    0x40 -> alu word (readW zReg) (return   1 ) zReg opIncDec -- 16b INC
    0x48 -> alu word (readW zReg) (return (-1)) zReg opIncDec -- 16b DEC
    0x50 -> readW zReg >>= push16                       -- 16b PUSH reg
    0x58 -> pop16 >>= writeW zReg                       -- 16b POP reg
    0x90 -> do v1 <- readW zReg                         -- 16b XCHG (or NOP)
               v2 <- readReg regAx
               writeW zReg (v2 :: Word16)
               writeReg regAx (v1 :: Word16)
    0xB0 -> readInstr8  >>= writeW zReg -- (BUG!)       -- 8b MOV reg,imm
    0xB8 -> readInstr16 >>= writeW zReg                 -- 16b MOV reg,imm
    _ -> case bool opcode 0x82 (opcode == 0x80) of
      0x72 -> jump       =<< readCpu cf                 -- JB/JNAE/JC
      0x74 -> jump       =<< readCpu zf                 -- JE/JZ
      0x75 -> jump . not =<< readCpu zf                 -- JNE/JNZ
      0x76 -> jump       =<< (||) <$> readCpu cf <*> readCpu zf -- JBE
      0x77 -> jump . not =<< (||) <$> readCpu cf <*> readCpu zf -- JA
      0x79 -> jump . not =<< readCpu sf                 -- JNS
      0x81 -> do                                        -- 16b arith to imm
        (operand,_,op) <- readModRM
        alu word (readW operand) readInstr16 operand (decodeALU op)
      0x82 -> do                                        -- 8b arith to imm
        (operand,_,op) <- readModRM
        alu byte (readW operand) readInstr8 operand (decodeALU op)
      0x83 -> do                                        -- 16b arith to 8s imm
        (operand,_,op) <- readModRM
        alu word (readW operand) (byteToWordSE <$> readInstr8) operand
            (decodeALU op)
      0x86 -> do                                        -- 8b XCHG reg,RM
        (operand,reg,_) <- readModRM
        v1 <- readDecodedReg8 reg
        v2 <- readW operand
        writeReg (decodeReg8 reg) (v2 :: Word8)
        writeW operand v1
      0x88 -> do                                        -- 8b MOV RM,reg
        (operand,reg,_) <- readModRM
        readDecodedReg8 reg >>= writeW operand
      0x89 -> do                                        -- 16b MOV RM,reg
        (operand,reg,_) <- readModRM
        readDecodedReg16 reg >>= writeW operand
      0x8A -> do                                        -- 8b MOV reg,RM
        (operand,reg,_) <- readModRM
        val <- readW operand
        writeReg (decodeReg8 reg) (val :: Word8)
      0x8B -> do                                        -- 16b MOV reg,RM
        (operand,reg,_) <- readModRM
        val <- readW operand
        writeReg (decodeReg16 reg) (val :: Word16)
      0xC3 -> pop16 >>= writeReg regIp                  -- RET
      0xC7 -> do (operand,_,_) <- readModRM             -- 16b MOV RM,imm
                 readInstr16 >>= writeW operand
      0xE8 -> readInstr16 >>= incrIP >>= push16         -- CALL relative
      0xEB -> jump True                                 -- JMP short
      0xF4 -> fail "Halting and Catching Fire"          -- HLT
      0xF9 -> writeCpu cf True                          -- STC
      0xFE -> do                                        -- 8-bit INC/DEC RM
        (operand,_,op) <- readModRM
        alu byte (readW operand) (return $ 1-2*op) operand
            (\a b -> return (True,Nothing,a+b)) -- kinda duplicate :(

------------------------------------------------------------

main = do
  rawRam <- (++ repeat 0) . B.unpack <$> B.getContents
  putStr $ unlines $ runST $ do
    cpu <- newCPU rawRam
    flip runReaderT cpu $ runMaybeT $ do
      writeReg regSp (0x100 :: Word16)
      forever processInstr

    -- Next three lines is the screen dump extraction.
    forM [0..25] $ \i -> forM [0..79] $ \j -> do
      c <- chr . fromIntegral <$> readArray (ram cpu) (0x8000 + 80*i + j)
      return $ bool ' ' c (isPrint c)

Output untuk biner sampel yang disediakan cocok dengan spesifikasi dengan sempurna. Cobalah menggunakan doa seperti:

runhaskell 8086.hs <8086.bin

Sebagian besar operasi yang tidak diimplementasikan hanya akan menghasilkan kegagalan pencocokan pola.

Saya masih berniat memberi faktor lebih banyak, dan menerapkan output langsung aktual dengan kutukan.

Pembaruan 1: turun ke 234 baris. Lebih baik mengatur kode berdasarkan fungsionalitas, menyelaraskan apa yang bisa, mencoba menempel 80 kolom. Dan refactored ALU beberapa kali.

Pembaruan 2: sudah lima tahun, saya pikir pembaruan untuk membuatnya dapat dikompilasi dengan sempurna pada GHC terbaru bisa dalam rangka. Sepanjang jalan:

  • menyingkirkan liftM, liftM2 dan semacamnya. Saya suka memiliki <$>dan <*>di Pendahuluan.
  • Data.Bool dan Data.ByteString, menyimpan sedikit dan membersihkan.
  • Register IP dulu khusus (unaddressable), sekarang ada di file register. 8086 tidak masuk akal, tapi hei aku pegolf.
  • Semuanya murni berbasis kode ST sekarang. Dari sudut pandang golf, ini menyebalkan, karena itu membuat banyak jenis tanda tangan diperlukan. Di sisi lain, saya memiliki pertengkaran dengan hati nurani saya dan saya kehilangan, jadi sekarang Anda mendapatkan kode yang bersih dan panjang.
  • Jadi sekarang ini dilacak git.
  • Menambahkan komentar yang lebih serius. Sebagai akibatnya, cara saya menghitung baris telah berubah: Saya membuang baris kosong dan komentar murni. Saya dengan ini menjamin semua lini tetapi impor kurang dari 80 karakter. Saya tidak menjatuhkan tanda tangan jenis karena yang saya tinggalkan sebenarnya diperlukan untuk membuatnya dikompilasi dengan benar (terima kasih banyak kebersihan ST).

Seperti komentar kode katakan, 5 baris (impor Data.Char, pemetaan register 8-bit, dan dump layar) tidak termasuk spesifikasi, jadi Anda dipersilakan untuk mendiskonnya jika merasa ingin :-)


3
Bagus Ini sangat singkat, terutama dibandingkan dengan solusi saya dan yang lainnya. Kode Anda juga terlihat sangat bagus, meskipun saya harus mempelajari Haskell terlebih dahulu.
salin

3
Kerja bagus! Sangat singkat. Saya harus belajar haskell.
ja

Apa .|.? / 10char
Soham Chowdhury

@octatoan operasi yang dikenal dalam opcodes x86 sebagai OR.
JB

46

C - 7143 baris (CPU itu sendiri 3162 baris)

EDIT: Windows build sekarang memiliki menu drop-down untuk mengganti disk virtual.

Saya telah menulis emulator PC 80186 / V20 penuh (dengan CGA / MCGA / VGA, sound blaster, adlib, mouse, dll), bukanlah hal sepele untuk meniru 8086 dengan cara apa pun. Butuh berbulan-bulan untuk mendapatkan sepenuhnya akurat. Inilah modul CPU yang hanya keluar dari emulator saya.

http://sourceforge.net/p/fake86/code/ci/master/tree/src/fake86/cpu.c

Saya akan menjadi yang pertama mengakui bahwa saya menggunakan terlalu banyak variabel global dalam emulator ini. Saya mulai menulis ini ketika saya masih cukup baru untuk C, dan itu menunjukkan. Saya perlu membersihkannya beberapa hari ini. Sebagian besar file sumber lain di dalamnya tidak terlihat jelek.

Anda dapat melihat semua kode (dan beberapa tangkapan layar, satu di bawah) melalui sini: http://sourceforge.net/p/fake86

Saya akan sangat senang membantu orang lain yang ingin menulis sendiri, karena ini sangat menyenangkan, dan Anda belajar BANYAK tentang CPU! Penafian: Saya tidak menambahkan emulasi 8080 V20 karena hampir tidak pernah digunakan dalam program PC. Sepertinya banyak pekerjaan tanpa hasil.

Street Fighter 2!


3
Kerja bagus! Apakah game benar-benar berjalan dengan kecepatan penuh?
salin

1
Terima kasih. Ya, ini berjalan beberapa kali lebih cepat daripada 8088. Pada sistem modern dapat melakukan kecepatan 486-like. Pada prosesor yang benar-benar bagus, ini seperti Pentium low-end. Sayangnya meniru CPU tidak bisa benar-benar multithreaded. Saya melakukan semua rendering video di utas itu sendiri. Saya sudah menjalankannya pada 400 MHz PowePC G3 lama saya juga, karena itu turun ke kecepatan 8088 yang sebenarnya.
Mike C

1
Luar biasa! Saya juga ingin menerapkan lebih banyak kode op dan segmentasi; Namun, tidak dapat menemukan sangat banyak program pengujian untuk dijalankan. Apakah Anda mengunduh ROM lama?
Dave C

1
Dave, tidak benar-benar ada kekurangan 8086 tes ROM di luar sana secara mengejutkan seperti yang Anda ketahui juga. Cara saya melakukannya adalah dengan memulai dengan membuat ROM BIOS XT generik berjalan dengan benar. Jika banyak yang berhasil, segmentasi Anda mungkin baik-baik saja. Setelah itu, itu hanya debugging sampai DOS mulai bekerja ... kemudian ke aplikasi dan game! :)
Mike C

1
@MikeC Saya ingin bantuan atau petunjuk pemula! (Pun Dimaksudkan: P). Saya telah menjadi pengembang Desktop dan Aplikasi Web selama bertahun-tahun sekarang dan perlahan-lahan saya sampai pada titik di mana saya memiliki kode sumber linux. Saya umumnya mengerti bagaimana berbagai bagian fungsi OS dan saya sudah bisa bermain dengan proyek OS mainan kecil. Tetapi berinteraksi dengan perangkat keras langsung hanya menghindar dari saya!
gideon

41

Catatan tambahan (130 200 367 517 531 222 246 baris)

Masih dalam proses, tetapiSaya ingin menunjukkan beberapa kode dalam upaya mendorong orang lain untuk menunjukkan beberapa kode .

Kumpulan register direpresentasikan sebagai satu string, sehingga berbagai register berukuran byte dan kata dapat secara alami tumpang tindih dengan merujuk pada substring. Substring digunakan sebagai pointer sepanjang, sehingga register dan lokasi memori (substring dari string memori) dapat diperlakukan secara seragam dalam fungsi operator.

Lalu ada beberapa kata untuk mendapatkan dan menyimpan data (byte atau kata) dari "pointer", dari memori, dari mem [(IP)] (incrementing IP). Kemudian ada beberapa fungsi untuk mengambil byte MOD-REG-R / M dan mengatur variabel REG dan R / M dan MOD, dan mendekode mereka menggunakan tabel. Kemudian fungsi operator, dikunci ke byte opcode. Jadi loop eksekusi sederhana fetchb load exec.

Saya hanya punya sedikit opcodes yang diimplementasikan, tetapi gMendapatkan decoding operan terasa seperti tonggak sejarah sehingga saya ingin membagikannya.

sunting: Menambahkan kata untuk memperpanjang nomor negatif. Lebih banyak opcodes. Perbaikan bug dalam tugas register. Komentar. Masih mengerjakan bendera dan mengisi operator. Keluaran menyajikan beberapa pilihan: teks keluaran ke stdout pada terminasi, keluaran terus menerus menggunakan kode vt100, keluaran ke jendela gambar menggunakan font CP437.

sunting: Penulisan selesai, mulai debugging. Ia mendapat empat titik keluaran pertama! Kemudian carry salah. Ngantuk.

sunting: Saya pikir saya sudah membawa Bendera Carry. Beberapa cerita terjadi di comp.lang.postscript . Saya telah menambahkan beberapa alat debugging, dan hasilnya menuju ke jendela grafik (menggunakan font-3 Jenis-3 Code-3 saya yang ditulis sebelumnya ), sehingga output teks bisa penuh dengan jejak dan dump. Itu menulis "Hello World!" dan kemudian ada tanda curiga itu. Lalu semuanya tidak ada artinya. :( Kita akan sampai di sana. Terima kasih atas semua dorongan!

sunting: Menjalankan tes hingga selesai. Beberapa bug terakhir adalah: XCHG melakukan 2 {read store} ulangi yang tentu saja salinan daripada pertukaran, DAN tidak mengatur bendera, (FE) INC mencoba untuk mendapatkan kata dari byte pointer.

sunting: Total tulis ulang dari awal menggunakan tabel ringkas dari manual ( membalik halaman baru! ). Saya mulai berpikir bahwa keluar-masuk toko dari opcode adalah ide yang buruk, tetapi itu membantu menjaga optab cantik. Tidak ada tangkapan layar saat ini. Saya menambahkan penghitung instruksi dan mod-trigger untuk membuang memori video, sehingga mudah dihubungkan dengan info debug.

sunting: Jalankan program pengujian, lagi! Beberapa bug terakhir untuk penulisan ulang yang lebih pendek lalai untuk menandatangani-memperpanjang byte langsung dalam opcodes 83 (grup "Segera") dan EB (short JMP). Peningkatan 24-baris mencakup rutinitas debug tambahan yang diperlukan untuk melacak bug-bug akhir itu.

%!
%a8086.ps Draught2:BREVITY
[/NULL<0000>/nul 0
/mem 16#ffff string %16-bit memory
/CF 0 /OF 0 /AF 0 /ZF 0 /SF 0
/regs 20 string >>begin %register byte storage
0{AL AH CL CH DL DH BL BH}{regs 2 index 1 getinterval def 1 add}forall pop
0{AX CX DX BX SP BP SI DI IP FL}{regs 2 index 2 getinterval def 2 add}forall pop

%getting and fetching
[/*b{0 get} %get byte from pointer
/*w{dup *b exch 1 get bbw} %get word from pointer
/*{{*b *w}W get exec} %get data(W) from pointer
/bbw{8 bitshift add} %lo-byte hi-byte -> word
/shiftmask{2 copy neg bitshift 3 1 roll 1 exch bitshift 1 sub and}
/fetchb{IP *w mem exch get bytedump   IP dup *w 1 add storew} % byte(IP++)
/fetchw{fetchb fetchb bbw} % word(IP),IP+=2

%storing and accessing
/storeb{16#ff and 0 exch put} % ptr val8 -> -
/storew{2 copy storeb -8 bitshift 16#ff and 1 exch put} % ptr val16 -> -
/stor{{storeb storew}W get exec} % ptr val(W) -> -
/memptr{16#ffff and mem exch {1 2}W get getinterval} % addr -> ptr(W)

%decoding the mod-reg-reg/mem byte
/mrm{fetchb 3 shiftmask /RM exch def 3 shiftmask /REG exch def /MOD exch def}
/REGTAB[[AL CL DL BL AH CH DH BH][AX CX DX BX SP BP SI DI]]
/decreg{REGTAB W get REG get} % REGTAB[W][REG]
%2 indexes,   with immed byte,   with immed word
/2*w{exch *w exch *w add}/fba{fetchb add}/fwa{fetchw add}
/RMTAB[[{BX SI 2*w}{BX DI 2*w}{BP SI 2*w}{BP DI 2*w}
    {SI *w}{DI *w}{fetchw}{BX *w}]
[{BX SI 2*w fba}{BX DI 2*w fba}{BP SI 2*w fba}{BP DI 2*w fba}
    {SI *w fba}{DI *w fba}{BP *w fba}{BX *w fba}]
[{BX SI 2*w fwa}{BX DI 2*w fwa}{BP SI 2*w fwa}{BP DI 2*w fwa}
    {SI *w fwa}{DI *w fwa}{BP *w fwa}{BX *w fwa}]]
/decrm{MOD 3 eq{REGTAB W get RM get} %MOD=3:register mode
    {RMTAB MOD get RM get exec memptr}ifelse} % RMTAB[MOD][RM] -> addr -> ptr

%setting and storing flags
/flagw{OF 11 bitshift SF 7 bitshift or ZF 6 bitshift or AF 4 bitshift CF or}
/wflag{dup 1 and /CF exch def dup -4 bitshift 1 and /AF exch def
    dup -6 bitshift 1 and /ZF exch def dup -7 bitshift 1 and /SF exch def
    dup -11 bitshift 1 and /OF exch def}
/nz1{0 ne{1}{0}ifelse}
/logflags{/CF 0 def /OF 0 def /AF 0 def %clear mathflags
    dup {16#80 16#8000}W get and nz1 /SF exch def
    dup {16#ff 16#ffff}W get and 0 eq{1}{0}ifelse /ZF exch def}
/mathflags{{z y x}{exch def}forall
    /CF z {16#ff00 16#ffff0000}W get and nz1 def
    /OF z x xor z y xor and {16#80 16#8000}W get and nz1 def
    /AF x y xor z xor 16#10 and nz1 def
    z} %leave the result on stack

%opcodes (each followed by 'stor')  %% { OPTAB fetchb get exec stor } loop
/ADD{2 copy add logflags mathflags}
/OR{or logflags}
/ADC{CF add ADD}
/SBB{D 1 xor {exch}repeat CF add 2 copy sub logflags mathflags}
/AND{and logflags}
/SUB{D 1 xor {exch}repeat 2 copy sub logflags mathflags}
/XOR{xor logflags}
/CMP{3 2 roll pop NULL 3 1 roll SUB} %dummy stor target
/INC{t CF exch dup * 1 ADD 3 2 roll /CF exch def}
/DEC{t CF exch dup * 1 SUB 3 2 roll /CF exch def}
/PUSH{SP dup *w 2 sub storew   *w SP *w memptr exch}
/POP{SP *w memptr *w   SP dup *w 2 add storew}

/jrel{w {CBW IP *w add IP exch}{NULL exch}ifelse}
/JO{fetchb OF 1 eq jrel }
/JNO{fetchb OF 0 eq jrel }
/JB{fetchb CF 1 eq jrel }
/JNB{fetchb CF 0 eq jrel }
/JZ{fetchb ZF 1 eq jrel }
/JNZ{fetchb ZF 0 eq jrel }
/JBE{fetchb CF ZF or 1 eq jrel }
/JNBE{fetchb CF ZF or 0 eq jrel }
/JS{fetchb SF 1 eq jrel }
/JNS{fetchb SF 0 eq jrel }
/JL{fetchb SF OF xor 1 eq jrel }
/JNL{fetchb SF OF xor 0 eq jrel }
/JLE{fetchb SF OF xor ZF or 1 eq jrel }
/JNLE{fetchb SF OF xor ZF or 0 eq jrel }

/bw{dup 16#80 and 0 ne{16#ff xor 1 add 16#ffff xor 1 add}if}
/IMMTAB{ADD OR ADC SBB AND SUB XOR CMP }cvlit
/immed{ W 2 eq{ /W 1 def
            mrm decrm dup * fetchb bw
    }{ mrm decrm dup * {fetchb fetchw}W get exec }ifelse
    exch IMMTAB REG get dup == exec }

%/TEST{ }
/XCHG{3 2 roll pop 2 copy exch * 4 2 roll * stor }
/AXCH{w dup AX XCHG }
/NOP{ NULL nul }
/pMOV{D{exch}repeat pop }
/mMOV{ 3 1 roll pop pop }
/MOV{ }
/LEA{w mrm decreg RMTAB MOD get RM get exec }

/CBW{dup 16#80 and 0 ne {16#ff xor 1 add 16#ffff xor 1 add } if }
/CWD{dup 16#8000 and 0 ne {16#ffff xor 1 add neg } if }
/CALL{w xp /xp{}def fetchw IP PUSH storew IP dup *w 3 2 roll add dsp /dsp{}def }
%/WAIT{ }
/PUSHF{NULL dup flagw storew 2 copy PUSH }
/POPF{NULL dup POP *w wflag }
%/SAHF{ }
%/LAHF{ }

%/MOVS{ }
%/CMPS{ }
%/STOS{ }
%/LODS{ }
%/SCAS{ }
/RET{w IP POP storew SP dup * 3 2 roll add }
%/LES{ }
%/LDS{ }

/JMP{IP dup fetchw exch *w add}
/sJMP{IP dup fetchb bw exch *w add}

/HLT{exit}
/CMC{/CF CF 1 xor def NULL nul}
/CLC{/CF 0 def NULL nul}
/STC{/CF 1 def NULL nul}

/NOT{not logflags }
/NEG{neg logflags }
/GRP1TAB{TEST --- NOT NEG MUL IMUL DIV IDIV } cvlit
/Grp1{mrm decrm dup * GRP1TAB REG get
dup ==
exec }
/GRP2TAB{INC DEC {id CALL}{l id CALL}{id JMP}{l id JMP} PUSH --- } cvlit
/Grp2{mrm decrm GRP2TAB REG get
dup ==
exec }

%optab shortcuts
/2*{exch * exch *}
/rm{mrm decreg decrm D index 3 1 roll 2*} % fetch,decode mrm -> dest *reg *r-m
/rmp{mrm decreg decrm D index 3 1 roll} % fetch,decode mrm -> dest reg r-m
/ia{ {{AL dup *b fetchb}{AX dup *w fetchw}}W get exec } %immed to accumulator
/is{/W 2 def}
/b{/W 0 def} %select byte operation
/w{/W 1 def} %select word operation
/t{/D 1 def} %dest = reg
/f{/D 0 def} %dest = r/m
/xp{} /dsp{}
%/far{ /xp { <0000> PUSH storew } /dsp { fetchw pop } def }
/i{ {fetchb fetchw}W get exec }

/OPTAB{
{b f rm ADD}{w f rm ADD}{b t rm ADD}{w t rm ADD}{b ia ADD}{w ia ADD}{ES PUSH}{ES POP} %00-07
 {b f rm OR}{w f rm OR}{b t rm OR}{w t rm OR}{b ia OR}{w ia OR}{CS PUSH}{}            %08-0F
{b f rm ADC}{w f rm ADC}{b t rm ADC}{w t rm ADC}{b ia ADC}{w ia ADC}{SS PUSH}{SS POP} %10-17
 {b f rm SBB}{w f rm SBB}{b t rm SBB}{w t rm SBB}{b ia SBB}{w ia SBB}{DS PUSH}{DS POP}%18-1F
{b f rm AND}{w f rm AND}{b t rm AND}{w t rm AND}{b ia AND}{w ia AND}{ES SEG}{DAA}     %20-27
 {b f rm SUB}{w f rm SUB}{b t rm SUB}{w t rm SUB}{b ia SUB}{w ia SUB}{CS SEG}{DAS}    %28-2F
{b f rm XOR}{w f rm XOR}{b t rm XOR}{w t rm XOR}{b ia XOR}{w ia XOR}{SS SEG}{AAA}     %30-37
 {b f rm CMP}{w f rm CMP}{b t rm CMP}{w t rm CMP}{b ia CMP}{w ia CMP}{DS SEG}{AAS}    %38-3F
{w AX INC}{w CX INC}{w DX INC}{w BX INC}{w SP INC}{w BP INC}{w SI INC}{w DI INC}      %40-47
 {w AX DEC}{w CX DEC}{w DX DEC}{w BX DEC}{w SP DEC}{w BP DEC}{w SI DEC}{w DI DEC}     %48-4F
{AX PUSH}{CX PUSH}{DX PUSH}{BX PUSH}{SP PUSH}{BP PUSH}{SI PUSH}{DI PUSH}              %50-57
 {AX POP}{CX POP}{DX POP}{BX POP}{SP POP}{BP POP}{SI POP}{DI POP}                     %58-5F
{}{}{}{}{}{}{}{}  {}{}{}{}{}{}{}{}                                                    %60-6F
{JO}{JNO}{JB}{JNB}{JZ}{JNZ}{JBE}{JNBE} {JS}{JNS}{JP}{JNP}{JL}{JNL}{JLE}{JNLE}         %70-7F

{b f immed}{w f immed}{b f immed}{is f immed}{b TEST}{w TEST}{b rmp XCHG}{w rmp XCHG}   %80-87
 {b f rm pMOV}{w f rm pMOV}{b t rm pMOV}{w t rm pMOV}                                 %88-8B
   {sr f rm pMOV}{LEA}{sr t rm pMOV}{w mrm decrm POP}                                 %8C-8F
{NOP}{CX AXCH}{DX AXCH}{BX AXCHG}{SP AXCH}{BP AXCH}{SI AXCH}{DI AXCH}             %90-97
 {CBW}{CWD}{far CALL}{WAIT}{PUSHF}{POPF}{SAHF}{LAHF}                                  %98-9F
{b AL m MOV}{w AX m MOV}{b m AL MOV}{b AX m MOV}{MOVS}{MOVS}{CMPS}{CMPS}              %A0-A7
 {b i a TEST}{w i a TEST}{STOS}{STOS}{LODS}{LODS}{SCAS}{SCAS}                         %A8-AF
{b AL i MOV}{b CL i MOV}{b DL i MOV}{b BL i MOV}                                      %B0-B3
 {b AH i MOV}{b CH i MOV}{b DH i MOV}{b BH i MOV}                                     %B4-B7
 {w AX i MOV}{w CX i MOV}{w DX i MOV}{w BX i MOV}                                     %B8-BB
 {w SP i MOV}{w BP i MOV}{w SI i MOV}{w DI i MOV}                                     %BC-BF
{}{}{fetchw RET}{0 RET}{LES}{LDS}{b f rm i mMOV}{w f rm i mMOV}                       %C0-B7
 {}{}{fetchw RET}{0 RET}{3 INT}{fetchb INT}{INTO}{IRET}                               %C8-CF
{b Shift}{w Shift}{b v Shift}{w v Shift}{AAM}{AAD}{}{XLAT}                            %D0-D7
 {0 ESC}{1 ESC}{2 ESC}{3 ESC}{4 ESC}{5 ESC}{6 ESC}{7 ESC}                             %D8-DF
{LOOPNZ}{LOOPZ}{LOOP}{JCXZ}{b IN}{w IN}{b OUT}{w OUT}                                 %E0-E7
 {CALL}{JMP}{far JMP}{sJMP}{v b IN}{v w IN}{v b OUT}{v w OUT}                         %E8-EF
{LOCK}{}{REP}{z REP}{HLT}{CMC}{b Grp1}{w Grp}                                         %F0-F7
 {CLC}{STC}{CLI}{STI}{CLD}{STD}{b Grp2}{w Grp2}                                       %F8-FF
}cvlit

/break{ /hook /pause load def }
/c{ /hook {} def }
/doprompt{
    (\nbreak>)print
    flush(%lineedit)(r)file
    cvx {exec}stopped pop }
/pause{ doprompt }
/hook{}

/stdout(%stdout)(w)file
/bytedump{ <00> dup 0 3 index put stdout exch writehexstring ( )print }
/regdump{ REGTAB 1 get{ stdout exch writehexstring ( )print }forall
    stdout IP writehexstring ( )print
    {(NC )(CA )}CF get print
    {(NO )(OV )}OF get print
    {(NS )(SN )}SF get print
    {(NZ )(ZR )}ZF get print
    stdout 16#1d3 w memptr writehexstring
    (\n)print
}
/mainloop{{
    %regdump
    OPTAB fetchb get
    dup ==
    exec
    %pstack flush
    %hook
    stor
    /ic ic 1 add def ictime
}loop}

/printvideo{
    0 1 28 {
        80 mul 16#8000 add mem exch 80 getinterval {
            dup 0 eq { pop 32 } if
                    dup 32 lt 1 index 126 gt or { pop 46 } if
            stdout exch write
        } forall (\n)print
    } for
    (\n)print
}
/ic 0
/ictime{ic 10 mod 0 eq {onq} if}
/timeq 10
/onq{ %printvideo
}
>>begin
currentdict{dup type/arraytype eq 1 index xcheck and
    {bind def}{pop pop}ifelse}forall

SP 16#100 storew
(codegolf.8086)(r)file mem readstring pop
pop[

mainloop
printvideo

%eof

Dan output (dengan ujung keluaran debugging disingkat).

75 {JNZ}
19 43 {w BX INC}
83 {is f immed}
fb 64 CMP
76 {JBE}
da f4 {HLT}
.........
Hello, world!
0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~


################################################################################
##                                                                            ##
##  0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987                          ##
##                                                                            ##
##  0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400     ##
##                                                                            ##
##  2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97    ##
##                                                                            ##
##                                                                            ##
##                                                                            ##
##                                                                            ##
##                                                                            ##
##                                                                            ##
##                                                                            ##
##                                                                            ##
##                                                                            ##
##                                                                            ##
##                                                                            ##
##                                                                            ##
################################################################################





GS<1>

5
Saya ingin tahu ... Apakah hot-key untuk menutup aplikasi alt-F4 karena F4h adalah 8086 HLT opcode?
luser droog

5
Saya hanya ingin memberi tahu Anda bahwa Anda benar-benar hebat untuk mengimplementasikan ini dalam Postscript.
cemper93

1
Kode itu pendek . Layak lebih banyak upvotes. Milik saya, untuk memulai.
JB

2
tunggu ... postscript adalah bahasa pemrograman ?! ;)
n611x007

32

Javascript

Saya menulis emulator 486 di javascript yang terinspirasi oleh jslinux. Jika saya tahu berapa banyak pekerjaan itu, saya mungkin tidak akan pernah memulai, tetapi sekarang saya ingin menyelesaikannya.

Lalu saya menemukan tantangan Anda dan sangat senang memiliki program 8086 untuk diuji.

http://i.stack.imgur.com/54a6S.png

Anda dapat "melihatnya" dijalankan langsung di sini: http://codinguncut.com/jsmachine/

Saya punya satu masalah saat mencetak buffer grafis. Di mana harus ada spasi, memori mengandung elemen "00". Apakah benar menafsirkan "0x00" sebagai ruang atau apakah saya memiliki bug di emulator saya?

Tepuk tangan,

Johannes


Menarik, saya sebenarnya tahu nama Anda dari Screencasts Anda, yang saya saksikan setelah respons Haskell dalam tantangan ini (dan saya juga memulai emulator x86 dalam Javascript). Ya, nol byte akan muncul sebagai spasi. Saya juga telah menambahkan tangkapan layar ke pos Anda. +1 tetap :-)
salin

@Johannes Saya melihat sekilas kode mycpu-min.js. Dari apa yang saya tahu Anda hanya menggunakan beberapa ide dari cpux86.js (dari jslinux FB). Selamat! Sebuah kerja bagus. Adakah peluang untuk melihat mycpu.js yang tidak dikompilasi di suatu tempat? Semoga di github.com/codinguncut
Yauhen Yakimovich

@YauhenYakimovich Tidak, saya belum menggunakan kembali kode jslinux. Saya telah menerapkan sejauh ini semua instruksi 286 dikurangi paging dan segmentasi (mmu). Rencana saya adalah merilis kode di bawah GPL, tapi saya benar-benar ingin mengkomersilkan ide untuk menjalankan yaitu Freedos atau Reactos jadi saya masih tidak yakin tentang lisensi. Yang benar adalah, itu akan memakan waktu lama bagi saya untuk mengimplementasikan memori penuh mgmt. dan kemudian waktu yang lama untuk menjalankannya dengan kecepatan. Saya pasti akan berbagi di github.com/codinguncut. Terima kasih atas tanggapan Anda, Johannes
fluquid

1
Tautan rusak untuk saya. (IE pada windows 8)
Conor O'Brien

Ini datang sangat terlambat. Karakter nol adalah ruang lain dalam RAM video.
Joshua

30

C ++

Saya ingin mengirimkan entri kami untuk tantangan kode ini. Itu ditulis dalam c ++ dan menjalankan program pengujian dengan sempurna. Kami telah menerapkan 90% dari Kode Ops One Byte dan Segmentasi Dasar (beberapa dinonaktifkan karena tidak bekerja dengan program pengujian).

Program Write Up: http://davecarruth.com/index.php/2012/04/15/creating-an-8086-emulator

Anda dapat menemukan kode dalam file zip di akhir Posting Blog.

Screenshot mengeksekusi program pengujian: masukkan deskripsi gambar di sini

Ini butuh sedikit waktu ... jika Anda memiliki pertanyaan atau komentar maka jangan ragu untuk mengirim saya pesan. Itu tentu latihan yang bagus dalam pemrograman mitra.


3
Itu selalu baik ketika orang bersenang-senang dengan tantangan ini :) Hanya beberapa catatan: Program pengujian saya harus bekerja (dan diuji) dengan semua segmen memusatkan perhatian. Melihat beberapa kode Anda, saya perhatikan bahwa ret imminstruksinya salah (lihat di sini ) dan Anda kehilangan 0xffgrup. Saya suka pesan kesalahan Anda: throw "Nilai segera tidak dapat menyimpan nilai, perlambat.";
salin

Kami memiliki dua masalah utama dengan program pengujian: 1) Segmentasi - ketika ada PANGGILAN kami mendorong CS pada tumpukan ... salah satu fungsi dalam program pengujian tidak suka ini. 2) Program uji berharap memori kita diinisialisasi ke nol. Bagaimanapun, kami bersenang-senang, terima kasih banyak untuk kirimannya!
Dave C

Anda mungkin telah membuat kesalahan di sana: Lompatan dekat ( 0xE8 ) jangan mendorong csregister
salin

Itu akan menjadi masalah, tangkapan bagus! Anda tampaknya sangat berpengalaman dengan 8086, apakah Anda memprogram untuk itu?
Dave C

1
Saya sebenarnya mengerjakan proyek emulator x86 sendiri. Ini menjalankan freedos dengan cukup baik dan saya saat ini bekerja pada dukungan 32 bit penuh; hanya tidak memposting di sini karena mungkin tidak adil untuk poster lain (dan kode sumbernya sedikit kacau).
salin

28

C

Tantangan Hebat dan yang pertama. Saya membuat akun hanya karena tantangannya membuat saya sangat penasaran. Sisi buruknya adalah saya tidak bisa berhenti memikirkan tantangan ketika saya memiliki pekerjaan pemrograman yang nyata dan berbayar.

Saya merasa terdorong untuk menjalankan emulasi 8086 yang sudah selesai, tapi itu tantangan lain ;-)

Kode ini ditulis dalam ANSI-C, jadi cukup kompilasi / tautkan file .c bersama-sama, masukkan binary codegolf, dan lanjutkan.

sumber di-zip

masukkan deskripsi gambar di sini


Pekerjaan bagus, RichTX!
Dave C

Terimakasih Dave. Kamu juga. Saya tidak mengerti harapan membuat kode sekecil mungkin ketika saya mulai, tapi itu masih sebuah tantangan.
RichTX

+1 Saya mengintip kode Anda untuk mengetahui bagaimana flag carry bekerja.
luser droog

Tautan ini rusak untuk saya.
Tyilo

25

C ++ 1064 baris

Proyek yang fantastis. Saya melakukan emulator Intellivision bertahun-tahun yang lalu, jadi itu bagus untuk melenturkan otot-otot saya yang menggedor-gedor lagi.

Setelah sekitar satu minggu bekerja, saya tidak bisa lebih bersemangat ketika ini terjadi:

.........
╤╤╤╤╤╤╤╤╤╤╤╤╤╤
0123456789:;? @ ABCDEFGHIJKLMNOPQRSTUVWXYZ [\] ^ _ `abcdefghijklmnopqrstuvwxyz {|} ~


############################################### #############################
############################################### ######################
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 1 4 9 ♠ a ♣ b ♠ cd ♦ f ☺h `§☺b, ♦ d E f` ♠ i ↓ ♣ b 8 ♠ e Y h ↑ ♦ b = ☺f `

    2 3 4 5 6 7 8 9 a ☺a ☻a ♥ a ♦ a ♣ a ♠ a aa ab ☺b ☻b ♥ b ♦ b ♣ b ♠ b bb b
 c ☺c ☻c ♥ c ♦ c ♣ c ♠ c cc cd ☺d ☻d ♥ d ♦ d ♣ d ♠ d dd de ☺e ☻e ♥ e ♦ e ♣ e ♠ e
 ee ef ☺f ☻f ♥ f ♦ f ♣ f ♠ f ff fg ☺g ☻g ♥ g ♦ g ♣ g ♠ gggh ☺h ☻h ♥
h ♦ h ♣ h ♠ h hh hai ☺i ☻i ♥ i ♦ i ♣ i ♠ i ii i `

Sedikit debugging nanti dan ... SHAZAM! masukkan deskripsi gambar di sini

Juga, saya membangun kembali program pengujian asli tanpa ekstensi 80386, karena saya ingin membangun emulator saya dengan 8086 dan tidak membohongi petunjuk tambahan. Tautan langsung ke kode di sini: File zip .

Ok, saya bersenang-senang dengan ini. Saya membagi memori dan manajemen layar, dan sekarang layar diperbarui ketika buffer layar ditulis. Saya membuat video :)

http://www.youtube.com/watch?v=qnAssaTpmnA

Pembaruan: Pass pertama segmentasi sudah masuk. Sangat sedikit instruksi yang benar-benar diimplementasikan, tetapi saya mengujinya dengan menggerakkan CS / DS dan SS, dan semuanya masih berjalan dengan baik.

Juga ditambahkan penanganan interupsi yang belum sempurna. Sangat sederhana. Tapi saya menerapkan int 21h untuk mencetak string. Menambahkan beberapa baris ke sumber pengujian dan mengunggahnya juga.

start:
    sti
    mov ah, 9
    mov dx, joetext
    int 21h
...

joetext:
    db 'This was printed by int 21h$', 0

masukkan deskripsi gambar di sini

Jika ada yang punya kode perakitan yang cukup sederhana yang akan menguji segmen, saya ingin bermain dengannya.

Saya mencoba mencari tahu seberapa jauh saya ingin mengambil ini. Emulasi CPU penuh? Mode VGA? Sekarang saya sedang menulis DOSBox.

12/6: Coba lihat, mode VGA!

masukkan deskripsi gambar di sini


Adakah kemungkinan Anda dapat memposting kode Anda di situs gratis yang tidak memerlukan pendaftaran? Terima kasih
Dave C

Doh, saya tidak menyadarinya perlu registrasi. Maaf soal itu! Saya akan mencoba melakukannya ketika saya pulang malam ini.
JoeFish

@DaveC, periksa hasil edit terbaru.
JoeFish

Saya ingin tahu apakah ada porta unta Utara. Itu akan menguji segmen.
luser droog

Itu luar biasa! +1 lagi. btw, ada adalah port 8086 unta sebagainya bradrodriguez.com/papers/index.html .
luser droog

25

C ++ - 4455 baris

Dan tidak, saya tidak hanya melakukan persyaratan pertanyaan. Saya melakukan SELURUH 8086, termasuk 16 opcode yang belum pernah DIKENAL. reenigne membantu menghitung opcode-opcode itu.

https://github.com/Alegend45/IBM5150


di mana file 4455-line? oh, aku menemukannya. yang #include "cpu.h"sulit untuk melihat.
luser droog

2
(w) pernyataan sakelar kudus!
luser droog

Ya, ini akan semakin buruk, karena saya akan memasukkan dukungan NEC V20 juga.
Darius Goad

Saya telah melihat melalui blog reenigne . Tidak dapat menemukan apa pun tentang opcodes tambahan ini. Apakah ini online di suatu tempat?
luser droog

1
Dia belum memperbarui blognya untuk sementara waktu. Dia ada di # ibm5150 di EFNET, jadi Anda bisa bertanya padanya di sana.
Darius Goad

20

Javascript - 4.404 baris

Saya menemukan posting ini ketika meneliti informasi untuk emulator saya sendiri. Posting Codegolf ini benar-benar sangat berharga bagi saya. Program contoh dan perakitan terkait memungkinkan untuk dengan mudah men-debug dan melihat apa yang terjadi.

Terima kasih!!!

Dan ini adalah versi pertama emulator Javascript 8086 saya.

Proses yang sudah selesai

Fitur:

  • Semua opcode yang diperlukan untuk tantangan ini plus beberapa tambahan yang cukup mirip sehingga mudah dikodekan
  • Video mode teks yang berfungsi sebagian (80x25) (belum ada interupsi)
  • Stack yang berfungsi
  • Memori dasar (tidak tersegmentasi)
  • Debugging lumayan (harus punya ini)
  • Set font Code memuat secara dinamis dari representasi bitmap

Demo

Saya memiliki demo online, silakan bermain dengannya dan beri tahu saya jika Anda menemukan bug :)

http://js86emu.chadrempp.com/

Untuk menjalankan program codegolf

1) klik pada tombol pengaturan

masukkan deskripsi gambar di sini

2) kemudian cukup klik muat (Anda dapat bermain dengan opsi debug di sini, seperti melangkah melalui program). Program codegolf adalah satu-satunya yang tersedia saat ini, saya sedang berusaha mendapatkan lebih banyak online.

masukkan deskripsi gambar di sini

Sumber

Sumber lengkap di sini. https://github.com/crempp/js86emu

Saya mencoba menempelkan nyali emulasi 8086 di sini (seperti yang disarankan oleh gagang pintu) tetapi melebihi batas karakter ("Badan terbatas pada 30000 karakter; Anda memasukkan 158.272").

Berikut adalah tautan cepat ke kode yang akan saya tempel di sini - https://github.com/crempp/js86emu/blob/39dbcb7106a0aaf59e003cd7f722acb4b6923d87/src/js/emu/cpus/8086.js

*Edit - updated for new demo and repo location


Wow, bagus! Namun, akan ideal jika kode itu ada di pos Anda sendiri, karena kami lebih suka posting kami mandiri.
Gagang Pintu

@ Doorknob, saya tidak yakin saya mengerti. Anda ingin saya memposting 4.400 baris kode sebaris, di pos?
crempp

Umm ... Aku tidak menyadari itu bahwa panjang. Apakah sesuai dengan batas karakter maksimum? Jika demikian, maka ya, akan lebih bagus jika posting Anda mandiri. Terima kasih! :-)
Gagang Pintu

13

Jawa

Saya sudah lama ingin melakukan tantangan ini, dan akhirnya saya meluangkan waktu untuk melakukannya. Sejauh ini, ini merupakan pengalaman yang luar biasa dan saya bangga bisa mencapainya sehingga saya akhirnya menyelesaikannya.

Output Program Uji

Sumber

Kode sumber tersedia di GitHub di NeatMonster / Intel8086 . Saya telah mencoba mendokumentasikan hampir semua hal, dengan bantuan Panduan Pengguna Keluarga holly 8086 .

Saya bermaksud menerapkan semua opcodes dan fitur yang hilang, jadi Anda mungkin ingin memeriksa rilis 1.0 untuk versi dengan hanya yang diperlukan untuk tantangan ini.

Banyak terima kasih kepada @ copy!


13

Common Lisp - 580 loc (442 tanpa baris kosong & komentar)

Saya menggunakan tantangan ini sebagai alasan untuk mempelajari Common Lisp. Inilah hasilnya:

;;; Program settings

(defparameter *disasm* nil "Whether to disassemble")

(defmacro disasm-instr (on-disasm &body body)
  `(if *disasm*
       ,on-disasm
       (progn ,@body)))

;;; State variables

(defparameter *ram* (make-array (* 64 1024) :initial-element 0 :element-type '(unsigned-byte 8)) "Primary segment")
(defparameter *stack* (make-array (* 64 1024) :initial-element 0 :element-type '(unsigned-byte 8)) "Stack segment")
(defparameter *flags* '(:cf 0 :sf 0 :zf 0) "Flags")
(defparameter *registers* '(:ax 0 :bx 0 :cx 0 :dx 0 :bp 0 :sp #x100 :si 0 :di 0) "Registers")
(defparameter *ip* 0 "Instruction pointer")
(defparameter *has-carried* nil "Whether the last wraparound changed the value")
(defparameter *advance* 0 "Bytes to advance IP by after an operation")

;;; Constants

(defconstant +byte-register-to-word+ '(:al (:ax nil) :ah (:ax t) :bl (:bx nil) :bh (:bx t) :cl (:cx nil) :ch (:cx t) :dl (:dx nil) :dh (:dx t)) "Mapping from byte registers to word registers")
(defconstant +bits-to-register+ '(:ax :cx :dx :bx :sp :bp :si :di) "Mapping from index to word register")
(defconstant +bits-to-byte-register+ '(:al :cl :dl :bl :ah :ch :dh :bh) "Mapping from index to byte register")

;;; Constant mappings

(defun bits->word-reg (bits)
  (elt +bits-to-register+ bits))

(defun bits->byte-reg (bits)
  (elt +bits-to-byte-register+ bits))

(defun address-for-r/m (mod-bits r/m-bits)
  (disasm-instr
      (if (and (= mod-bits #b00) (= r/m-bits #b110))
      (list :disp (peek-at-word))
      (case r/m-bits
        (#b000 (list :base :bx :index :si))
        (#b001 (list :base :bx :index :di))
        (#b010 (list :base :bp :index :si))
        (#b011 (list :base :bp :index :di))
        (#b100 (list :index :si))
        (#b101 (list :index :di))
        (#b110 (list :base :bp))
        (#b111 (list :base :bx))))
    (if (and (= mod-bits #b00) (= r/m-bits #b110))
    (peek-at-word)
    (case r/m-bits
      (#b000 (+ (register :bx) (register :si)))
      (#b001 (+ (register :bx) (register :di)))
      (#b010 (+ (register :bp) (register :si)))
      (#b011 (+ (register :bp) (register :di)))
      (#b100 (register :si))
      (#b101 (register :di))
      (#b110 (register :bp))
      (#b111 (register :bx))))))

;;; Convenience functions

(defun reverse-little-endian (low high)
  "Reverse a little-endian number."
  (+ low (ash high 8)))

(defun negative-p (value is-word)
  (or (if is-word (>= value #x8000) (>= value #x80)) (< value 0)))

(defun twos-complement (value is-word)
  (if (negative-p value is-word)
      (- (1+ (logxor value (if is-word #xffff #xff))))
      value))

(defun wrap-carry (value is-word)
  "Wrap around an carried value."
  (let ((carry (if is-word (>= value #x10000) (>= value #x100))))
    (setf *has-carried* carry)
    (if carry
    (if is-word (mod value #x10000) (mod value #x100))
    value)))

;;; setf-able locations

(defun register (reg)
  (disasm-instr reg
    (getf *registers* reg)))

(defun set-reg (reg value)
  (setf (getf *registers* reg) (wrap-carry value t)))

(defsetf register set-reg)

(defun byte-register (reg)
  (disasm-instr reg
    (let* ((register-to-word (getf +byte-register-to-word+ reg)) (word (first register-to-word)))
      (if (second register-to-word)
      (ash (register word) -8)
      (logand (register word) #x00ff)))))

(defun set-byte-reg (reg value)
  (let* ((register-to-word (getf +byte-register-to-word+ reg)) (word (first register-to-word)) (wrapped-value (wrap-carry value nil)))
    (if (second register-to-word)
    (setf (register word) (+ (ash wrapped-value 8) (logand (register word) #x00ff)))
    (setf (register word) (+ wrapped-value (logand (register word) #xff00))))))

(defsetf byte-register set-byte-reg)

(defun flag (name)
  (getf *flags* name))

(defun set-flag (name value)
  (setf (getf *flags* name) value))

(defsetf flag set-flag)

(defun flag-p (name)
  (= (flag name) 1))

(defun set-flag-p (name is-set)
  (setf (flag name) (if is-set 1 0)))

(defsetf flag-p set-flag-p)

(defun byte-in-ram (location segment)
  "Read a byte from a RAM segment."
  (elt segment location))

(defsetf byte-in-ram (location segment) (value)
  "Write a byte to a RAM segment."
  `(setf (elt ,segment ,location) ,value))

(defun word-in-ram (location segment)
  "Read a word from a RAM segment."
  (reverse-little-endian (elt segment location) (elt segment (1+ location))))

(defsetf word-in-ram (location segment) (value)
  "Write a word to a RAM segment."
  `(progn
     (setf (elt ,segment ,location) (logand ,value #x00ff))
     (setf (elt ,segment (1+ ,location)) (ash (logand ,value #xff00) -8))))

(defun indirect-address (mod-bits r/m-bits is-word)
  "Read from an indirect address."
  (disasm-instr
      (if (= mod-bits #b11) (register (if is-word (bits->word-reg r/m-bits) (bits->byte-reg r/m-bits)))
      (let ((base-index (address-for-r/m mod-bits r/m-bits)))
        (unless (getf base-index :disp)
          (setf (getf base-index :disp)
            (case mod-bits
              (#b00 0)
              (#b01 (next-instruction))
              (#b10 (next-word)))))
        base-index))
    (let ((address-base (address-for-r/m mod-bits r/m-bits)))
      (case mod-bits
    (#b00 (if is-word (word-in-ram address-base *ram*) (byte-in-ram address-base *ram*)))
    (#b01 (if is-word (word-in-ram (+ address-base (peek-at-instruction)) *ram*) (byte-in-ram (+ address-base (peek-at-instruction)) *ram*)))
    (#b10 (if is-word (word-in-ram (+ address-base (peek-at-word)) *ram*) (byte-in-ram (+ address-base (peek-at-word)) *ram*)))
    (#b11 (if is-word (register (bits->word-reg r/m-bits)) (byte-register (bits->byte-reg r/m-bits))))))))

(defsetf indirect-address (mod-bits r/m-bits is-word) (value)
  "Write to an indirect address."
  `(let ((address-base (address-for-r/m ,mod-bits ,r/m-bits)))
    (case ,mod-bits
      (#b00 (if ,is-word (setf (word-in-ram address-base *ram*) ,value) (setf (byte-in-ram address-base *ram*) ,value)))
      (#b01 (if ,is-word (setf (word-in-ram (+ address-base (peek-at-instruction)) *ram*) ,value) (setf (byte-in-ram (+ address-base (peek-at-instruction)) *ram*) ,value)))
      (#b10 (if ,is-word (setf (word-in-ram (+ address-base (peek-at-word)) *ram*) ,value) (setf (byte-in-ram (+ address-base (peek-at-word)) *ram*) ,value)))
      (#b11 (if ,is-word (setf (register (bits->word-reg ,r/m-bits)) ,value) (setf (byte-register (bits->byte-reg ,r/m-bits)) ,value))))))

;;; Instruction loader

(defun load-instructions-into-ram (instrs)
  (setf *ip* 0)
  (setf (subseq *ram* 0 #x7fff) instrs)
  (length instrs))

(defun next-instruction ()
  (incf *ip*)
  (elt *ram* (1- *ip*)))

(defun next-word ()
  (reverse-little-endian (next-instruction) (next-instruction)))

(defun peek-at-instruction (&optional (forward 0))
  (incf *advance*)
  (elt *ram* (+ *ip* forward)))

(defun peek-at-word ()
  (reverse-little-endian (peek-at-instruction) (peek-at-instruction 1)))

(defun advance-ip ()
  (incf *ip* *advance*)
  (setf *advance* 0))

(defun advance-ip-ahead-of-indirect-address (mod-bits r/m-bits)
  (cond
    ((or (and (= mod-bits #b00) (= r/m-bits #b110)) (= mod-bits #b10)) 2)
    ((= mod-bits #b01) 1)
    (t 0)))

(defun next-instruction-ahead-of-indirect-address (mod-bits r/m-bits)
  (let ((*ip* *ip*))
    (incf *ip* (advance-ip-ahead-of-indirect-address mod-bits r/m-bits))
    (incf *advance*)
    (next-instruction)))

(defun next-word-ahead-of-indirect-address (mod-bits r/m-bits)
  (let ((*ip* *ip*))
    (incf *ip* (advance-ip-ahead-of-indirect-address mod-bits r/m-bits))
    (incf *advance* 2)
    (next-word)))

;;; Memory access

(defun read-word-from-ram (loc &optional (segment *ram*))
  (word-in-ram loc segment))

(defun write-word-to-ram (loc word &optional (segment *ram*))
  (setf (word-in-ram loc segment) word))

(defun push-to-stack (value)
  (decf (register :sp) 2)
  (write-word-to-ram (register :sp) value *stack*))

(defun pop-from-stack ()
  (incf (register :sp) 2)
  (read-word-from-ram (- (register :sp) 2) *stack*))

;;; Flag effects

(defun set-cf-on-add (value)
  (setf (flag-p :cf) *has-carried*)
  value)

(defun set-cf-on-sub (value1 value2)
  (setf (flag-p :cf) (> value2 value1))
  (- value1 value2))

(defun set-sf-on-op (value is-word)
  (setf (flag-p :sf) (negative-p value is-word))
  value)

(defun set-zf-on-op (value)
  (setf (flag-p :zf) (= value 0))
  value)

;;; Operations

;; Context wrappers

(defun with-one-byte-opcode-register (opcode fn)
  (let ((reg (bits->word-reg (mod opcode #x08))))
    (funcall fn reg)))

(defmacro with-mod-r/m-byte (&body body)
  `(let* ((mod-r/m (next-instruction)) (r/m-bits (logand mod-r/m #b00000111)) (mod-bits (ash (logand mod-r/m #b11000000) -6)) (reg-bits (ash (logand mod-r/m #b00111000) -3)))
     ,@body))

(defmacro with-in-place-mod (dest mod-bits r/m-bits &body body)
  `(progn
     ,@body
     (when (equal (car ',dest) 'indirect-address)
       (decf *advance* (advance-ip-ahead-of-indirect-address ,mod-bits ,r/m-bits)))))

;; Templates

(defmacro mov (src dest)
  `(disasm-instr (list "mov" :src ,src :dest ,dest)
     (setf ,dest ,src)))

(defmacro xchg (op1 op2)
  `(disasm-instr (list "xchg" :op1 ,op1 :op2 ,op2)
     (rotatef ,op1 ,op2)))

(defmacro inc (op1 is-word)
  `(disasm-instr (list "inc" :op1 ,op1)
     (set-sf-on-op (set-zf-on-op (incf ,op1)) ,is-word)))

(defmacro dec (op1 is-word)
  `(disasm-instr (list "dec" :op1 ,op1)
     (set-sf-on-op (set-zf-on-op (decf ,op1)) ,is-word)))

;; Group handling

(defmacro parse-group-byte-pair (opcode operation mod-bits r/m-bits)
  `(,operation ,mod-bits ,r/m-bits (oddp ,opcode)))

(defmacro parse-group-opcode (&body body)
  `(with-mod-r/m-byte
     (case reg-bits
       ,@body)))

;; One-byte opcodes on registers

(defun clear-carry-flag ()
  (disasm-instr '("clc")
    (setf (flag-p :cf) nil)))

(defun set-carry-flag ()
  (disasm-instr '("stc")
    (setf (flag-p :cf) t)))

(defun push-register (reg)
  (disasm-instr (list "push" :src reg)
    (push-to-stack (register reg))))

(defun pop-to-register (reg)
  (disasm-instr (list "pop" :dest reg)
    (setf (register reg) (pop-from-stack))))

(defun inc-register (reg)
  (inc (register reg) t))

(defun dec-register (reg)
  (dec (register reg) t))

(defun xchg-register (reg)
  (disasm-instr (if (eql reg :ax) '("nop") (list "xchg" :op1 :ax :op2 reg))
    (xchg (register :ax) (register reg))))

(defun mov-byte-to-register (opcode)
  (let ((reg (bits->byte-reg (mod opcode #x08))))
    (mov (next-instruction) (byte-register reg))))

(defun mov-word-to-register (reg)
  (mov (next-word) (register reg)))

;; Flow control

(defun jmp-short ()
  (disasm-instr (list "jmp" :op1 (twos-complement (next-instruction) nil))
    (incf *ip* (twos-complement (next-instruction) nil))))

(defmacro jmp-short-conditionally (opcode condition mnemonic)
  `(let ((disp (next-instruction)))
     (if (evenp ,opcode)
       (disasm-instr (list (concatenate 'string "j" ,mnemonic) :op1 (twos-complement disp nil))
     (when ,condition
       (incf *ip* (twos-complement disp nil))))
       (disasm-instr (list (concatenate 'string "jn" ,mnemonic) :op1 (twos-complement disp nil))
     (unless ,condition
       (incf *ip* (twos-complement disp nil)))))))

(defun call-near ()
  (disasm-instr (list "call" :op1 (twos-complement (next-word) t))
    (push-to-stack (+ *ip* 2))
    (incf *ip* (twos-complement (next-word) t))))

(defun ret-from-call ()
  (disasm-instr '("ret")
    (setf *ip* (pop-from-stack))))

;; ALU

(defmacro parse-alu-opcode (opcode operation)
  `(let ((mod-8 (mod ,opcode 8)))
     (case mod-8
       (0
    (with-mod-r/m-byte
      (,operation (byte-register (bits->byte-reg reg-bits)) (indirect-address mod-bits r/m-bits nil) nil mod-bits r/m-bits)))
       (1
    (with-mod-r/m-byte
      (,operation (register (bits->word-reg reg-bits)) (indirect-address mod-bits r/m-bits t) t mod-bits r/m-bits)))
       (2
    (with-mod-r/m-byte
      (,operation (indirect-address mod-bits r/m-bits nil) (byte-register (bits->byte-reg reg-bits)) nil)))
       (3
    (with-mod-r/m-byte
      (,operation (indirect-address mod-bits r/m-bits t) (register (bits->word-reg reg-bits)) t)))
       (4
    (,operation (next-instruction) (byte-register :al) nil))
       (5
    (,operation (next-word) (register :ax) t)))))

(defmacro add-without-carry (src dest is-word &optional mod-bits r/m-bits)
  `(disasm-instr (list "add" :src ,src :dest ,dest)
     (with-in-place-mod ,dest ,mod-bits ,r/m-bits
       (set-zf-on-op (set-sf-on-op (set-cf-on-add (incf ,dest ,src)) ,is-word)))))

(defmacro add-with-carry (src dest is-word &optional mod-bits r/m-bits)
  `(disasm-instr (list "adc" :src ,src :dest ,dest)
     (with-in-place-mod ,dest ,mod-bits ,r/m-bits
       (set-zf-on-op (set-sf-on-op (set-cf-on-add (incf ,dest (+ ,src (flag :cf)))) ,is-word)))))

(defmacro sub-without-borrow (src dest is-word &optional mod-bits r/m-bits)
  `(disasm-instr (list "sub" :src ,src :dest ,dest)
     (with-in-place-mod ,dest ,mod-bits ,r/m-bits
       (let ((src-value ,src))
     (set-zf-on-op (set-sf-on-op (set-cf-on-sub (+ (decf ,dest src-value) src-value) src-value) ,is-word))))))

(defmacro sub-with-borrow (src dest is-word &optional mod-bits r/m-bits)
  `(disasm-instr (list "sbb" :src ,src :dest ,dest)
     (with-in-place-mod ,dest ,mod-bits ,r/m-bits
       (let ((src-plus-cf (+ ,src (flag :cf))))
     (set-zf-on-op (set-sf-on-op (set-cf-on-sub (+ (decf ,dest src-plus-cf) src-plus-cf) src-plus-cf) ,is-word))))))

(defmacro cmp-operation (src dest is-word &optional mod-bits r/m-bits)
  `(disasm-instr (list "cmp" :src ,src :dest ,dest)
     (set-zf-on-op (set-sf-on-op (set-cf-on-sub ,dest ,src) ,is-word))))

(defmacro and-operation (src dest is-word &optional mod-bits r/m-bits)
  `(disasm-instr (list "and" :src ,src :dest ,dest)
     (with-in-place-mod ,dest ,mod-bits ,r/m-bits
       (set-zf-on-op (set-sf-on-op (setf ,dest (logand ,src ,dest)) ,is-word))
       (setf (flag-p :cf) nil))))

(defmacro or-operation (src dest is-word &optional mod-bits r/m-bits)
  `(disasm-instr (list "or" :src ,src :dest ,dest)
     (with-in-place-mod ,dest ,mod-bits ,r/m-bits
       (set-zf-on-op (set-sf-on-op (setf ,dest (logior ,src ,dest)) ,is-word))
       (setf (flag-p :cf) nil))))

(defmacro xor-operation (src dest is-word &optional mod-bits r/m-bits)
  `(disasm-instr (list "xor" :src ,src :dest ,dest)
     (with-in-place-mod ,dest ,mod-bits ,r/m-bits
       (set-zf-on-op (set-sf-on-op (setf ,dest (logxor ,src ,dest)) ,is-word))
       (setf (flag-p :cf) nil))))

(defmacro parse-group1-byte (opcode operation mod-bits r/m-bits)
  `(case (mod ,opcode 4)
    (0 (,operation (next-instruction-ahead-of-indirect-address ,mod-bits ,r/m-bits) (indirect-address ,mod-bits ,r/m-bits nil) nil mod-bits r/m-bits))
    (1 (,operation (next-word-ahead-of-indirect-address ,mod-bits ,r/m-bits) (indirect-address ,mod-bits ,r/m-bits t) t mod-bits r/m-bits))
    (3 (,operation (twos-complement (next-instruction-ahead-of-indirect-address ,mod-bits ,r/m-bits) nil) (indirect-address ,mod-bits ,r/m-bits t) t mod-bits r/m-bits))))

(defmacro parse-group1-opcode (opcode)
  `(parse-group-opcode
     (0 (parse-group1-byte ,opcode add-without-carry mod-bits r/m-bits))
     (1 (parse-group1-byte ,opcode or-operation mod-bits r/m-bits))
     (2 (parse-group1-byte ,opcode add-with-carry mod-bits r/m-bits))
     (3 (parse-group1-byte ,opcode sub-with-borrow mod-bits r/m-bits))
     (4 (parse-group1-byte ,opcode and-operation mod-bits r/m-bits))
     (5 (parse-group1-byte ,opcode sub-without-borrow mod-bits r/m-bits))
     (6 (parse-group1-byte ,opcode xor-operation mod-bits r/m-bits))
     (7 (parse-group1-byte ,opcode cmp-operation mod-bits r/m-bits))))

;; Memory and register mov/xchg

(defun xchg-memory-register (opcode)
  (let ((is-word (oddp opcode)))
    (with-mod-r/m-byte
      (if is-word
      (xchg (register (bits->word-reg reg-bits)) (indirect-address mod-bits r/m-bits is-word))
      (xchg (byte-register (bits->byte-reg reg-bits)) (indirect-address mod-bits r/m-bits is-word))))))

(defmacro mov-immediate-to-memory (mod-bits r/m-bits is-word)
  `(if ,is-word
       (mov (next-word-ahead-of-indirect-address ,mod-bits ,r/m-bits) (indirect-address ,mod-bits ,r/m-bits t))
       (mov (next-instruction-ahead-of-indirect-address ,mod-bits ,r/m-bits) (indirect-address ,mod-bits ,r/m-bits nil))))

(defmacro parse-group11-opcode (opcode)
  `(parse-group-opcode
     (0 (parse-group-byte-pair ,opcode mov-immediate-to-memory mod-bits r/m-bits))))

(defmacro parse-mov-opcode (opcode)
  `(let ((mod-4 (mod ,opcode 4)))
     (with-mod-r/m-byte
       (case mod-4
     (0
      (mov (byte-register (bits->byte-reg reg-bits)) (indirect-address mod-bits r/m-bits nil)))
     (1
      (mov (register (bits->word-reg reg-bits)) (indirect-address mod-bits r/m-bits t)))
     (2
      (mov (indirect-address mod-bits r/m-bits nil) (byte-register (bits->byte-reg reg-bits))))
     (3
      (mov (indirect-address mod-bits r/m-bits t) (register (bits->word-reg reg-bits))))))))

;; Group 4/5 (inc/dec on EAs)

(defmacro inc-indirect (mod-bits r/m-bits is-word)
  `(inc (indirect-address ,mod-bits ,r/m-bits ,is-word) ,is-word))

(defmacro dec-indirect (mod-bits r/m-bits is-word)
  `(dec (indirect-address ,mod-bits ,r/m-bits ,is-word) ,is-word))

(defmacro parse-group4/5-opcode (opcode)
  `(parse-group-opcode
     (0 (parse-group-byte-pair ,opcode inc-indirect mod-bits r/m-bits))
     (1 (parse-group-byte-pair ,opcode dec-indirect mod-bits r/m-bits))))

;;; Opcode parsing

(defun in-paired-byte-block-p (opcode block)
  (= (truncate (/ opcode 2)) (/ block 2)))

(defun in-4-byte-block-p (opcode block)
  (= (truncate (/ opcode 4)) (/ block 4)))

(defun in-8-byte-block-p (opcode block)
  (= (truncate (/ opcode 8)) (/ block 8)))

(defun in-6-byte-block-p (opcode block)
  (and (= (truncate (/ opcode 8)) (/ block 8)) (< (mod opcode 8) 6)))

(defun parse-opcode (opcode)
  "Parse an opcode."
  (cond
    ((not opcode) (return-from parse-opcode nil))
    ((= opcode #xf4) (return-from parse-opcode '("hlt")))
    ((in-8-byte-block-p opcode #x40) (with-one-byte-opcode-register opcode #'inc-register))
    ((in-8-byte-block-p opcode #x48) (with-one-byte-opcode-register opcode #'dec-register))
    ((in-8-byte-block-p opcode #x50) (with-one-byte-opcode-register opcode #'push-register))
    ((in-8-byte-block-p opcode #x58) (with-one-byte-opcode-register opcode #'pop-to-register))
    ((in-8-byte-block-p opcode #x90) (with-one-byte-opcode-register opcode #'xchg-register))
    ((in-8-byte-block-p opcode #xb0) (mov-byte-to-register opcode))
    ((in-8-byte-block-p opcode #xb8) (with-one-byte-opcode-register opcode #'mov-word-to-register))
    ((= opcode #xf8) (clear-carry-flag))
    ((= opcode #xf9) (set-carry-flag))
    ((= opcode #xeb) (jmp-short))
    ((in-paired-byte-block-p opcode #x72) (jmp-short-conditionally opcode (flag-p :cf) "b"))
    ((in-paired-byte-block-p opcode #x74) (jmp-short-conditionally opcode (flag-p :zf) "z"))
    ((in-paired-byte-block-p opcode #x76) (jmp-short-conditionally opcode (or (flag-p :cf) (flag-p :zf)) "be"))
    ((in-paired-byte-block-p opcode #x78) (jmp-short-conditionally opcode (flag-p :sf) "s"))
    ((= opcode #xe8) (call-near))
    ((= opcode #xc3) (ret-from-call))
    ((in-6-byte-block-p opcode #x00) (parse-alu-opcode opcode add-without-carry))
    ((in-6-byte-block-p opcode #x08) (parse-alu-opcode opcode or-operation))
    ((in-6-byte-block-p opcode #x10) (parse-alu-opcode opcode add-with-carry))
    ((in-6-byte-block-p opcode #x18) (parse-alu-opcode opcode sub-with-borrow))
    ((in-6-byte-block-p opcode #x20) (parse-alu-opcode opcode and-operation))
    ((in-6-byte-block-p opcode #x28) (parse-alu-opcode opcode sub-without-borrow))
    ((in-6-byte-block-p opcode #x30) (parse-alu-opcode opcode xor-operation))
    ((in-6-byte-block-p opcode #x38) (parse-alu-opcode opcode cmp-operation))
    ((in-4-byte-block-p opcode #x80) (parse-group1-opcode opcode))
    ((in-4-byte-block-p opcode #x88) (parse-mov-opcode opcode))
    ((in-paired-byte-block-p opcode #x86) (xchg-memory-register opcode))
    ((in-paired-byte-block-p opcode #xc6) (parse-group11-opcode opcode))
    ((in-paired-byte-block-p opcode #xfe) (parse-group4/5-opcode opcode))))

;;; Main functions

(defun execute-instructions ()
  "Loop through loaded instructions."
  (loop
     for ret = (parse-opcode (next-instruction))
     until (equal ret '("hlt"))
     do (advance-ip)
     finally (return t)))

(defun disasm-instructions (instr-length)
  "Disassemble code."
  (loop
     for ret = (parse-opcode (next-instruction))
     collecting ret into disasm
     until (= *ip* instr-length)
     do (advance-ip)
     finally (return disasm)))

(defun loop-instructions (instr-length)
  (if *disasm*
      (disasm-instructions instr-length)
      (execute-instructions)))

(defun load-instructions-from-file (file)
  (with-open-file (in file :element-type '(unsigned-byte 8))
    (let ((instrs (make-array (file-length in) :element-type '(unsigned-byte 8) :initial-element 0 :adjustable t)))
      (read-sequence instrs in)
      instrs)))

(defun load-instructions (&key (file nil))
  (if file
      (load-instructions-from-file file)
      #()))

(defun print-video-ram (&key (width 80) (height 25) (stream t) (newline nil))
  (dotimes (line height)
    (dotimes (column width)
      (let ((char-at-cell (byte-in-ram (+ #x8000 (* line 80) column) *ram*)))
    (if (zerop char-at-cell)
        (format stream "~a" #\Space)
        (format stream "~a" (code-char char-at-cell)))))
    (if newline (format stream "~%"))))

(defun disasm (&key (file nil))
  (setf *disasm* t)
  (loop-instructions (load-instructions-into-ram (load-instructions :file file))))

(defun main (&key (file nil) (display nil) (stream t) (newline nil))
  (setf *disasm* nil)
  (loop-instructions (load-instructions-into-ram (load-instructions :file file)))
  (when display
    (print-video-ram :stream stream :newline newline)))

Inilah output di Emacs:

Jendela Emacs dengan dua panel, bagian dari sumber Lisp di sebelah kiri dan output REPL dengan konten yang diperlukan di sebelah kanan.

Saya ingin menyoroti tiga fitur utama. Kode ini membuat berat penggunaan macro ketika menerapkan petunjuk, seperti mov, xchg, dan operasi artithmetic. Setiap instruksi termasuk disasm-instrpanggilan makro. Ini mengimplementasikan pembongkaran di samping kode aktual menggunakan jika variabel global ditetapkan pada saat runtime. Saya sangat bangga dengan pendekatan agnostik tujuan yang digunakan untuk menulis nilai pada register dan alamat tidak langsung. Makro yang mengimplementasikan instruksi tidak peduli dengan tujuan, karena formulir yang disambungkan untuk setiap kemungkinan akan berfungsi dengan setfmakro umum Lisp umum.

Kode dapat ditemukan di repo GitHub saya . Cari cabang "codegolf", karena saya sudah mulai menerapkan fitur-fitur lain dari master 8086. Saya sudah menerapkan flag overflow dan parity, bersama dengan register FLAGS.

Ada tiga operasi dalam hal ini bukan di 8086, 0x82dan 0x83versi operator logis. Ini tertangkap sangat terlambat, dan akan sangat berantakan untuk menghapus operasi-operasi itu.

Saya ingin mengucapkan terima kasih kepada @ja untuk versi Python-nya, yang menginspirasi saya sejak awal dalam usaha ini.


3
Jawaban pertama yang luar biasa! Selamat datang di situs :)
DJMcMayhem

1
Pilihan bahasa yang sangat keren!
salin

12

C - 319 348 baris

Ini adalah terjemahan yang kurang lebih langsung dari program Postscript saya ke C. Tentu saja penggunaan stack diganti dengan variabel eksplisit. Bidang instruksi dipecah menjadi variabel o- byte instruksi opcode, d- bidang arah, w- bidang lebar. Jika ini adalah instruksi "mod-reg-r / m", byte mr-rm dibaca struct rm r. Decoding bidang reg dan r / m hasil dalam dua langkah: menghitung pointer ke data dan memuat data, menggunakan kembali variabel yang sama. Jadi untuk sesuatu seperti ADD AX,BX, x pertama adalah penunjuk ke kapak dan y adalah penunjuk ke bx, maka x adalah isinya (kapak) dan y adalah isinya (bx). Ada banyak casting yang diperlukan untuk menggunakan kembali variabel untuk tipe yang berbeda seperti ini.

Bytes opcode diterjemahkan dengan tabel fungsi pointer. Setiap fungsi tubuh disusun menggunakan makro untuk bagian yang dapat digunakan kembali. The DWmakro hadir dalam semua fungsi opcode dan decode ddan wvariabel dari obyte opcode. The RMPmakro melakukan tahap pertama decoding "mr-rm" byte, dan LDXYmelakukan tahap kedua. Opcode yang menyimpan hasil menggunakan pvariabel untuk menahan pointer ke lokasi hasil dan zvariabel untuk menyimpan nilai hasil. Bendera dihitung setelah znilainya dihitung. The INCdan DECoperasi menyimpan membawa bendera sebelum menggunakan generik MATHFLAGSfungsi (sebagai bagian dari ADDatauSUB submacro) dan kembalikan kata penutupnya, untuk menjaga Carry.

Edit: bug diperbaiki!
Edit: diperluas dan dikomentari. Saat trace==0ini menampilkan perintah ANSI move-to-0,0 saat membuang video. Jadi lebih baik mensimulasikan tampilan yang sebenarnya. Benda BIGENDIAN(yang bahkan tidak berfungsi) telah dihapus. Itu bergantung di beberapa tempat pada urutan byte little-endian, tapi saya berencana untuk memperbaikinya di revisi berikutnya. Pada dasarnya, semua akses pointer harus melalui get_dan put_fungsi - fungsi yang secara eksplisit (de) menyusun byte dalam urutan LE.

#include<ctype.h>
#include<stdint.h>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<sys/stat.h>
#include<unistd.h>
#define P printf
#define R return
#define T typedef
T intptr_t I; T uintptr_t U;
T short S; T unsigned short US;
T signed char C; T unsigned char UC; T void V;  // to make everything shorter
U o,w,d,f; // opcode, width, direction, extra temp variable (was initially for a flag, hence 'f')
U x,y,z;   // left operand, right operand, result
void *p;   // location to receive result
UC halt,debug=0,trace=0,reg[28],null[2],mem[0xffff]={ // operating flags, register memory, RAM
    1, (3<<6),        // ADD ax,ax
    1, (3<<6)+(4<<3), // ADD ax,sp
    3, (3<<6)+(4<<3), // ADD sp,ax
    0xf4 //HLT
};

// register declaration and initialization
#define H(_)_(al)_(ah)_(cl)_(ch)_(dl)_(dh)_(bl)_(bh)
#define X(_)_(ax)     _(cx)     _(dx)     _(bx)     _(sp)_(bp)_(si)_(di)_(ip)_(fl)
#define SS(_)_(cs)_(ds)_(ss)_(es)
#define HD(_)UC*_;      // half-word regs declared as unsigned char *
#define XD(_)US*_;      // full-word regs declared as unsigned short *
#define HR(_)_=(UC*)(reg+i++);      // init and increment by one
#define XR(_)_=(US*)(reg+i);i+=2;   // init and increment by two
H(HD)X(XD)SS(XD)V init(){I i=0;H(HR)i=0;X(XR)SS(XR)}    // declare and initialize register pointers
enum { CF=1<<0, PF=1<<2, AF=1<<4, ZF=1<<6, SF=1<<7, OF=1<<11 };

#define HP(_)P(#_ ":%02x ",*_);     // dump a half-word reg as zero-padded hex
#define XP(_)P(#_ ":%04x ",*_);     // dump a full-word reg as zero-padded hex
V dump(){ //H(HP)P("\n");
    P("\n"); X(XP)
    if(trace)P("%s %s %s %s ",*fl&CF?"CA":"NC",*fl&OF?"OV":"NO",*fl&SF?"SN":"NS",*fl&ZF?"ZR":"NZ");
    P("\n");  // ^^^ crack flag bits into strings ^^^
}

// get and put into memory in a strictly little-endian format
I get_(void*p,U w){R w? *(UC*)p + (((UC*)p)[1]<<8) :*(UC*)p;}
V put_(void*p,U x,U w){ if(w){ *(UC*)p=x; ((UC*)p)[1]=x>>8; }else *(UC*)p=x; }
// get byte or word through ip, incrementing ip
UC fetchb(){ U x = get_(mem+(*ip)++,0); if(trace)P("%02x(%03o) ",x,x); R x; }
US fetchw(){I w=fetchb();R w|(fetchb()<<8);}

T struct rm{U mod,reg,r_m;}rm;      // the three fields of the mod-reg-r/m byte
rm mrm(U m){ R(rm){ (m>>6)&3, (m>>3)&7, m&7 }; }    // crack the mrm byte into fields
U decreg(U reg,U w){    // decode the reg field, yielding a uintptr_t to the register (byte or word)
    if (w)R (U)((US*[]){ax,cx,dx,bx,sp,bp,si,di}[reg]);
    else R (U)((UC*[]){al,cl,dl,bl,ah,ch,dh,bh}[reg]); }
U rs(US*x,US*y){ R get_(x,1)+get_(y,1); }  // fetch and sum two full-words
U decrm(rm r,U w){      // decode the r/m byte, yielding uintptr_t
    U x=(U[]){rs(bx,si),rs(bx,di),rs(bp,si),rs(bp,di),get_(si,1),get_(di,1),get_(bp,1),get_(bx,1)}[r.r_m];
    switch(r.mod){ case 0: if (r.r_m==6) R (U)(mem+fetchw()); break;
                   case 1: x+=fetchb(); break;
                   case 2: x+=fetchw(); break;
                   case 3: R decreg(r.r_m,w); }
    R (U)(mem+x); }

// opcode helpers
    // set d and w from o
#define DW  if(trace){ P("%s:\n",__func__); } \
            d=!!(o&2); \
            w=o&1;
    // fetch mrm byte and decode, setting x and y as pointers to args and p ptr to dest
#define RMP rm r=mrm(fetchb());\
            x=decreg(r.reg,w); \
            y=decrm(r,w); \
            if(trace>1){ P("x:%d\n",x); P("y:%d\n",y); } \
            p=d?(void*)x:(void*)y;

    // fetch x and y values from x and y pointers
#define LDXY \
            x=get_((void*)x,w); \
            y=get_((void*)y,w); \
            if(trace){ P("x:%d\n",x); P("y:%d\n",y); }

    // normal mrm decode and load
#define RM  RMP LDXY

    // immediate to accumulator
#define IA x=(U)(p=w?(UC*)ax:al); \
           x=get_((void*)x,w); \
           y=w?fetchw():fetchb();

    // flags set by logical operators
#define LOGFLAGS  *fl=0; \
                  *fl |= ( (z&(w?0x8000:0x80))           ?SF:0) \
                       | ( (z&(w?0xffff:0xff))==0        ?ZF:0) ;

    // additional flags set by math operators
#define MATHFLAGS *fl |= ( (z&(w?0xffff0000:0xff00))     ?CF:0) \
                       | ( ((z^x)&(z^y)&(w?0x8000:0x80)) ?OF:0) \
                       | ( ((x^y^z)&0x10)                ?AF:0) ;

    // store result to p ptr
#define RESULT \
        if(trace)P(w?"->%04x ":"->%02x ",z); \
        put_(p,z,w);

// operators, composed with helpers in the opcode table below
    // most of these macros will "enter" with x and y already loaded with operands
#define PUSH(x) put_(mem+(*sp-=2),*(x),1)
#define POP(x) *(x)=get_(mem+(*sp+=2)-2,1)
#define ADD z=x+y; LOGFLAGS MATHFLAGS RESULT
#define ADC x+=(*fl&CF); ADD
#define SUB z=d?x-y:y-x; LOGFLAGS MATHFLAGS RESULT
#define SBB d?y+=*fl&CF:(x+=*fl&CF); SUB
#define CMP p=null; SUB
#define AND z=x&y; LOGFLAGS RESULT
#define  OR z=x|y; LOGFLAGS RESULT
#define XOR z=x^y; LOGFLAGS RESULT
#define INC(r) w=1; d=1; p=(V*)r; x=(S)*r; y=1; f=*fl&CF; ADD *fl=(*fl&~CF)|f;
#define DEC(r) w=1; d=1; p=(V*)r; x=(S)*r; y=1; f=*fl&CF; SUB *fl=(*fl&~CF)|f;
#define F(f) !!(*fl&f)
#define J(c) U cf=F(CF),of=F(OF),sf=F(SF),zf=F(ZF); y=(S)(C)fetchb(); \
                  if(trace)P("<%d> ", c); \
                  if(c)*ip+=(S)y;
#define JN(c) J(!(c))
#define IMM(a,b) rm r=mrm(fetchb()); \
            p=(void*)(y=decrm(r,w)); \
            a \
            x=w?fetchw():fetchb(); \
            b \
            d=0; \
            y=get_((void*)y,w); \
            if(trace){ P("x:%d\n",x); P("y:%d\n",y); } \
            if(trace){ P("%s ", (C*[]){"ADD","OR","ADC","SBB","AND","SUB","XOR","CMP"}[r.reg]); } \
            switch(r.reg){case 0:ADD break; \
                          case 1:OR break; \
                          case 2:ADC break; \
                          case 3:SBB break; \
                          case 4:AND break; \
                          case 5:SUB break; \
                          case 6:XOR break; \
                          case 7:CMP break; }
#define IMMIS IMM(w=0;,w=1;x=(S)(C)x;)
#define TEST z=x&y; LOGFLAGS MATHFLAGS
#define XCHG f=x;z=y; LDXY if(w){*(US*)f=y;*(US*)z=x;}else{*(UC*)f=y;*(UC*)z=x;}
#define MOV z=d?y:x; RESULT
#define MOVSEG
#define LEA RMP z=((UC*)y)-mem; RESULT
#define NOP
#define AXCH(r) x=(U)ax; y=(U)(r); w=1; XCHG
#define CBW *ax=(S)(C)*al;
#define CWD z=(I)(S)*ax; *dx=z>>16;
#define CALL x=w?fetchw():(S)(C)fetchb(); PUSH(ip); (*ip)+=(S)x;
#define WAIT
#define PUSHF PUSH(fl)
#define POPF POP(fl)
#define SAHF x=*fl; y=*ah; x=(x&~0xff)|y; *fl=x;
#define LAHF *ah=(UC)*fl;
#define mMOV if(d){ x=get_(mem+fetchw(),w); if(w)*ax=x; else*al=x; } \
             else { put_(mem+fetchw(),w?*ax:*al,w); }
#define MOVS
#define CMPS
#define STOS
#define LODS
#define SCAS
#define iMOVb(r) (*r)=fetchb();
#define iMOVw(r) (*r)=fetchw();
#define RET(v) POP(ip); if(v)*sp+=v*2;
#define LES
#define LDS
#define iMOVm if(w){iMOVw((US*)y)}else{iMOVb((UC*)y)}
#define fRET(v) POP(cs); RET(v)
#define INT(v)
#define INT0
#define IRET
#define Shift rm r=mrm(fetchb());
#define AAM
#define AAD
#define XLAT
#define ESC(v)
#define LOOPNZ
#define LOOPZ
#define LOOP
#define JCXZ
#define IN
#define OUT
#define INv
#define OUTv
#define JMP x=fetchw(); *ip+=(S)x;
#define sJMP x=(S)(C)fetchb(); *ip+=(S)x;
#define FARJMP
#define LOCK
#define REP
#define REPZ
#define HLT halt=1
#define CMC *fl=(*fl&~CF)|((*fl&CF)^1);
#define NOT
#define NEG
#define MUL
#define IMUL
#define DIV
#define IDIV
#define Grp1 rm r=mrm(fetchb()); \
             y=decrm(r,w); \
             if(trace)P("%s ", (C*[]){}[r.reg]); \
             switch(r.reg){case 0: TEST; break; \
                           case 2: NOT; break; \
                           case 3: NEG; break; \
                           case 4: MUL; break; \
                           case 5: IMUL; break; \
                           case 6: DIV; break; \
                           case 7: IDIV; break; }
#define Grp2 rm r=mrm(fetchb()); \
             y=decrm(r,w); \
             if(trace)P("%s ", (C*[]){"INC","DEC","CALL","CALL","JMP","JMP","PUSH"}[r.reg]); \
             switch(r.reg){case 0: INC((S*)y); break; \
                           case 1: DEC((S*)y); break; \
                           case 2: CALL; break; \
                           case 3: CALL; break; \
                           case 4: *ip+=(S)y; break; \
                           case 5: JMP; break; \
                           case 6: PUSH((S*)y); break; }
#define CLC *fl=*fl&~CF;
#define STC *fl=*fl|CF;
#define CLI
#define STI
#define CLD
#define STD

// opcode table
// An x-macro table of pairs (a, b) where a becomes the name of a void function(void) which
// implements the opcode, and b comprises the body of the function (via further macro expansion)
#define OP(_)\
/*dw:bf                 wf                     bt                    wt   */ \
_(addbf, RM ADD)      _(addwf, RM ADD)       _(addbt,  RM ADD)     _(addwt, RM ADD)     /*00-03*/\
_(addbi, IA ADD)      _(addwi, IA ADD)       _(pushes, PUSH(es))   _(popes, POP(es))    /*04-07*/\
_(orbf,  RM OR)       _(orwf,  RM OR)        _(orbt,   RM OR)      _(orwt,  RM OR)      /*08-0b*/\
_(orbi,  IA OR)       _(orwi,  IA OR)        _(pushcs, PUSH(cs))   _(nop0,       )      /*0c-0f*/\
_(adcbf, RM ADC)      _(adcwf, RM ADC)       _(adcbt,  RM ADC)     _(adcwt, RM ADC)     /*10-13*/\
_(adcbi, IA ADC)      _(adcwi, IA ADC)       _(pushss, PUSH(ss))   _(popss, POP(ss))    /*14-17*/\
_(sbbbf, RM SBB)      _(sbbwf, RM SBB)       _(sbbbt,  RM SBB)     _(sbbwt, RM SBB)     /*18-1b*/\
_(sbbbi, IA SBB)      _(sbbwi, IA SBB)       _(pushds, PUSH(ds))   _(popds, POP(ds))    /*1c-1f*/\
_(andbf, RM AND)      _(andwf, RM AND)       _(andbt, RM AND)      _(andwt, RM AND)     /*20-23*/\
_(andbi, IA AND)      _(andwi, IA AND)       _(esseg, )            _(daa, )             /*24-27*/\
_(subbf, RM SUB)      _(subwf, RM SUB)       _(subbt, RM SUB)      _(subwt, RM SUB)     /*28-2b*/\
_(subbi, IA SUB)      _(subwi, IA SUB)       _(csseg, )            _(das, )             /*2c-2f*/\
_(xorbf, RM XOR)      _(xorwf, RM XOR)       _(xorbt, RM XOR)      _(xorwt, RM XOR)     /*30-33*/\
_(xorbi, IA XOR)      _(xorwi, IA XOR)       _(ssseg, )            _(aaa, )             /*34-37*/\
_(cmpbf, RM CMP)      _(cmpwf, RM CMP)       _(cmpbt, RM CMP)      _(cmpwt, RM CMP)     /*38-3b*/\
_(cmpbi, IA CMP)      _(cmpwi, IA CMP)       _(dsseg, )            _(aas, )             /*3c-3f*/\
_(incax, INC(ax))     _(inccx, INC(cx))      _(incdx, INC(dx))     _(incbx, INC(bx))    /*40-43*/\
_(incsp, INC(sp))     _(incbp, INC(bp))      _(incsi, INC(si))     _(incdi, INC(di))    /*44-47*/\
_(decax, DEC(ax))     _(deccx, DEC(cx))      _(decdx, DEC(dx))     _(decbx, DEC(bx))    /*48-4b*/\
_(decsp, DEC(sp))     _(decbp, DEC(bp))      _(decsi, DEC(si))     _(decdi, DEC(di))    /*4c-4f*/\
_(pushax, PUSH(ax))   _(pushcx, PUSH(cx))    _(pushdx, PUSH(dx))   _(pushbx, PUSH(bx))  /*50-53*/\
_(pushsp, PUSH(sp))   _(pushbp, PUSH(bp))    _(pushsi, PUSH(si))   _(pushdi, PUSH(di))  /*54-57*/\
_(popax, POP(ax))     _(popcx, POP(cx))      _(popdx, POP(dx))     _(popbx, POP(bx))    /*58-5b*/\
_(popsp, POP(sp))     _(popbp, POP(bp))      _(popsi, POP(si))     _(popdi, POP(di))    /*5c-5f*/\
_(nop1, ) _(nop2, )   _(nop3, ) _(nop4, )    _(nop5, ) _(nop6, )   _(nop7, ) _(nop8, )  /*60-67*/\
_(nop9, ) _(nopA, )   _(nopB, ) _(nopC, )    _(nopD, ) _(nopE, )   _(nopF, ) _(nopG, )  /*68-6f*/\
_(jo, J(of))          _(jno, JN(of))         _(jb, J(cf))          _(jnb, JN(cf))       /*70-73*/\
_(jz, J(zf))          _(jnz, JN(zf))         _(jbe, J(cf|zf))      _(jnbe, JN(cf|zf))   /*74-77*/\
_(js, J(sf))          _(jns, JN(sf))         _(jp, )               _(jnp, )             /*78-7b*/\
_(jl, J(sf^of))       _(jnl_, JN(sf^of))     _(jle, J((sf^of)|zf)) _(jnle,JN((sf^of)|zf))/*7c-7f*/\
_(immb, IMM(,))       _(immw, IMM(,))        _(immb1, IMM(,))      _(immis, IMMIS)      /*80-83*/\
_(testb, RM TEST)     _(testw, RM TEST)      _(xchgb, RMP XCHG)    _(xchgw, RMP XCHG)   /*84-87*/\
_(movbf, RM MOV)      _(movwf, RM MOV)       _(movbt, RM MOV)      _(movwt, RM MOV)     /*88-8b*/\
_(movsegf, RM MOVSEG) _(lea, LEA)            _(movsegt, RM MOVSEG) _(poprm,RM POP((US*)p))/*8c-8f*/\
_(nopH, )             _(xchgac, AXCH(cx))    _(xchgad, AXCH(dx))   _(xchgab, AXCH(bx))  /*90-93*/\
_(xchgasp, AXCH(sp))  _(xchabp, AXCH(bp))    _(xchgasi, AXCH(si))  _(xchadi, AXCH(di))  /*94-97*/\
_(cbw, CBW)           _(cwd, CWD)            _(farcall, )          _(wait, WAIT)        /*98-9b*/\
_(pushf, PUSHF)       _(popf, POPF)          _(sahf, SAHF)         _(lahf, LAHF)        /*9c-9f*/\
_(movalb, mMOV)       _(movaxw, mMOV)        _(movbal, mMOV)       _(movwax, mMOV)      /*a0-a3*/\
_(movsb, MOVS)        _(movsw, MOVS)         _(cmpsb, CMPS)        _(cmpsw, CMPS)       /*a4-a7*/\
_(testaib, IA TEST)   _(testaiw, IA TEST)    _(stosb, STOS)        _(stosw, STOS)       /*a8-ab*/\
_(lodsb, LODS)        _(lodsw, LODS)         _(scasb, SCAS)        _(scasw, SCAS)       /*ac-af*/\
_(movali, iMOVb(al))  _(movcli, iMOVb(cl))   _(movdli, iMOVb(dl))  _(movbli, iMOVb(bl)) /*b0-b3*/\
_(movahi, iMOVb(ah))  _(movchi, iMOVb(ch))   _(movdhi, iMOVb(dh))  _(movbhi, iMOVb(bh)) /*b4-b7*/\
_(movaxi, iMOVw(ax))  _(movcxi, iMOVw(cx))   _(movdxi, iMOVw(dx))  _(movbxi, iMOVw(bx)) /*b8-bb*/\
_(movspi, iMOVw(sp))  _(movbpi, iMOVw(bp))   _(movsii, iMOVw(si))  _(movdii, iMOVw(di)) /*bc-bf*/\
_(nopI, )             _(nopJ, )              _(reti, RET(fetchw())) _(retz, RET(0))     /*c0-c3*/\
_(les, LES)           _(lds, LDS)            _(movimb, RMP iMOVm)  _(movimw, RMP iMOVm) /*c4-c7*/\
_(nopK, )             _(nopL, )              _(freti, fRET(fetchw())) _(fretz, fRET(0)) /*c8-cb*/\
_(int3, INT(3))       _(inti, INT(fetchb())) _(int0, INT(0))       _(iret, IRET)        /*cc-cf*/\
_(shiftb, Shift)      _(shiftw, Shift)       _(shiftbv, Shift)     _(shiftwv, Shift)    /*d0-d3*/\
_(aam, AAM)           _(aad, AAD)            _(nopM, )             _(xlat, XLAT)        /*d4-d7*/\
_(esc0, ESC(0))       _(esc1, ESC(1))        _(esc2, ESC(2))       _(esc3, ESC(3))      /*d8-db*/\
_(esc4, ESC(4))       _(esc5, ESC(5))        _(esc6, ESC(6))       _(esc7, ESC(7))      /*dc-df*/\
_(loopnz, LOOPNZ)     _(loopz, LOOPZ)        _(loop, LOOP)         _(jcxz, JCXZ)        /*e0-e3*/\
_(inb, IN)            _(inw, IN)             _(outb, OUT)          _(outw, OUT)         /*e4-e7*/\
_(call, w=1; CALL)    _(jmp, JMP)            _(farjmp, FARJMP)     _(sjmp, sJMP)        /*e8-eb*/\
_(invb, INv)          _(invw, INv)           _(outvb, OUTv)        _(outvw, OUTv)       /*ec-ef*/\
_(lock, LOCK)         _(nopN, )              _(rep, REP)           _(repz, REPZ)        /*f0-f3*/\
_(hlt, HLT)           _(cmc, CMC)            _(grp1b, Grp1)        _(grp1w, Grp1)       /*f4-f7*/\
_(clc, CLC)           _(stc, STC)            _(cli, CLI)           _(sti, STI)          /*f8-fb*/\
_(cld, CLD)           _(std, STD)            _(grp2b, Grp2)        _(grp2w, Grp2)       /*fc-ff*/
#define OPF(a,b)void a(){DW b;}     // generate opcode function
#define OPN(a,b)a,                  // extract name
OP(OPF)void(*tab[])()={OP(OPN)};    // generate functions, declare and populate fp table with names

V clean(C*s){I i;       // replace unprintable characters in 80-byte buffer with spaces
    for(i=0;i<80;i++)
        if(!isprint(s[i]))
            s[i]=' ';
}
V video(){I i;          // dump the (cleaned) video memory to the console
    C buf[81]="";
    if(!trace)P("\e[0;0;f");
    for(i=0;i<28;i++)
        memcpy(buf, mem+0x8000+i*80, 80),
        clean(buf),
        P("\n%s",buf);
    P("\n");
}

static I ct;        // timer memory for period video dump
V run(){while(!halt){if(trace)dump();
    if(!ct--){ct=10; video();}
    tab[o=fetchb()]();}}
V dbg(){
    while(!halt){
        C c;
        if(!ct--){ct=10; video();}
        if(trace)dump();
        //scanf("%c", &c);
        fgetc(stdin);
        //switch(c){
        //case '\n':
        //case 's':
            tab[o=fetchb()]();
            //break;
        //}
    }
}

I load(C*f){struct stat s; FILE*fp;     // load a file into memory at address zero
    R (fp=fopen(f,"rb"))
        && fstat(fileno(fp),&s) || fread(mem,s.st_size,1,fp); }

I main(I c,C**v){
    init();
    if(c>1){            // if there's an argument
        load(v[1]);     //     load named file
    }
    *sp=0x100;          // initialize stack pointer
    if(debug) dbg();    // if debugging, debug
    else run();         // otherwise, just run
    video();            // dump final video
    R 0;}               // remember what R means? cf. line 9

Menggunakan makro untuk tahapan berbagai operasi membuat pertandingan semantik yang sangat dekat dengan cara kode postscript beroperasi secara murni berurutan. Sebagai contoh, empat opcodes pertama, 0x00-0x03 adalah semua instruksi ADD dengan arah yang berbeda-beda (REG -> REG / MOD, REG <- REG / MOD) dan ukuran byte / kata, sehingga mereka direpresentasikan sama persis di tabel fungsi .

_(addbf, RM ADD)      _(addwf, RM ADD)       _(addbt,  RM ADD)     _(addwt, RM ADD)

Tabel fungsi dipakai dengan makro ini:

OP(OPF)

yang berlaku OPF()untuk setiap representasi opcode. OPF()didefinisikan sebagai:

#define OPF(a,b)void a(){DW b;}     // generate opcode function

Jadi, empat opcodes pertama berkembang (sekali) ke:

void addbf(){ DW RM ADD ; }
void addwf(){ DW RM ADD ; }
void addbt(){ DW RM ADD ; }
void addwt(){ DW RM ADD ; }

Fungsi-fungsi ini membedakan diri mereka sendiri dengan hasil DWmakro yang menentukan arah dan bit byte / kata langsung dari byte opcode. Memperluas tubuh dari salah satu fungsi ini (sekali) menghasilkan:

if(trace){ P("%s:\n",__func__); }  // DW: set d and w from o
d=!!(o&2);
w=o&1;
RMP LDXY  // RM: normal mrm decode and load
z=x+y; LOGFLAGS MATHFLAGS RESULT  // ADD
;

Di mana loop utama telah menetapkan ovariabel:

while(!halt){tab[o=fetchb()]();}}

Memperluas sekali lagi memberikan semua "daging" opcode:

// DW: set d and w from o
if(trace){ P("%s:\n",__func__); }
d=!!(o&2);
w=o&1;

// RMP: fetch mrm byte and decode, setting x and y as pointers to args and p ptr to dest
rm r=mrm(fetchb());
x=decreg(r.reg,w);
y=decrm(r,w);
if(trace>1){ P("x:%d\n",x); P("y:%d\n",y); }
p=d?(void*)x:(void*)y;

// LDXY: fetch x and y values from x and y pointers
x=get_((void*)x,w);
y=get_((void*)y,w);
if(trace){ P("x:%d\n",x); P("y:%d\n",y); }

z=x+y;   // ADD
// LOGFLAGS: flags set by logical operators
*fl=0;
*fl |= ( (z&(w?0x8000:0x80))           ?SF:0)
     | ( (z&(w?0xffff:0xff))==0        ?ZF:0) ;

// MATHFLAGS: additional flags set by math operators
*fl |= ( (z&(w?0xffff0000:0xff00))     ?CF:0)
     | ( ((z^x)&(z^y)&(w?0x8000:0x80)) ?OF:0)
     | ( ((x^y^z)&0x10)                ?AF:0) ;

// RESULT: store result to p ptr
if(trace)P(w?"->%04x ":"->%02x ",z);
put_(p,z,w);
;

Dan fungsi yang sepenuhnya diproses sebelumnya, melewati indent:

void
addbf ()
{
  if (trace)
    {
      printf ("%s:\n", __func__);
    }
  d = ! !(o & 2);
  w = o & 1;
  rm r = mrm (fetchb ());
  x = decreg (r.reg, w);
  y = decrm (r, w);
  if (trace > 1)
    {
      printf ("x:%d\n", x);
      printf ("y:%d\n", y);
    }
  p = d ? (void *) x : (void *) y;
  x = get_ ((void *) x, w);
  y = get_ ((void *) y, w);
  if (trace)
    {
      printf ("x:%d\n", x);
      printf ("y:%d\n", y);
    }
  z = x + y;
  *fl = 0;
  *fl |=
    ((z & (w ? 0x8000 : 0x80)) ? SF : 0) | ((z & (w ? 0xffff : 0xff)) ==
                        0 ? ZF : 0);
  *fl |=
    ((z & (w ? 0xffff0000 : 0xff00)) ? CF : 0) |
    (((z ^ x) & (z ^ y) & (w ? 0x8000 : 0x80)) ? OF : 0) |
    (((x ^ y ^ z) & 0x10) ? AF : 0);
  if (trace)
    printf (w ? "->%04x " : "->%02x ", z);
  put_ (p, z, w);;
}

Bukan gaya C terbaik untuk penggunaan sehari-hari, tetapi menggunakan makro dengan cara ini tampaknya cukup sempurna untuk membuat implementasi di sini sangat singkat dan sangat langsung.

Keluaran program uji, dengan ekor keluaran jejak:

43(103) incbx:
->0065 
ax:0020 cx:0015 dx:0190 bx:0065 sp:1000 bp:0000 si:0000 di:00c2 ip:013e fl:0000 NC NO NS NZ 
83(203) immis:
fb(373) 64(144) x:100
y:101
CMP ->0001 
ax:0020 cx:0015 dx:0190 bx:0065 sp:1000 bp:0000 si:0000 di:00c2 ip:0141 fl:0000 NC NO NS NZ 
76(166) jbe:
da(332) <0> 
ax:0020 cx:0015 dx:0190 bx:0065 sp:1000 bp:0000 si:0000 di:00c2 ip:0143 fl:0000 NC NO NS NZ 
f4(364) hlt:

.........                                                                       
Hello, world!                                                                   
0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ 


################################################################################
##                                                                            ##
##  0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987                          ##
##                                                                            ##
##  0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400     ##
##                                                                            ##
##  2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97    ##
##                                                                            ##
##                                                                            ##
##                                                                            ##
##                                                                            ##
##                                                                            ##
##                                                                            ##
##                                                                            ##
##                                                                            ##
##                                                                            ##
##                                                                            ##
##                                                                            ##
##                                                                            ##
################################################################################

Saya membagikan beberapa versi sebelumnya di comp.lang.c tetapi mereka tidak terlalu tertarik.



indented 5810 baris.
luser droog
Dengan menggunakan situs kami, Anda mengakui telah membaca dan memahami Kebijakan Cookie dan Kebijakan Privasi kami.
Licensed under cc by-sa 3.0 with attribution required.