Python 3, n≈40
def plausible_suffix(l,N):
if sum(l)>N:
return False
pairs = [(N-1-i,l[i]) for i in range(len(l))]
if sum(i*x for i,x in pairs)>N:
return False
num_remaining = N - len(l)
for index, desired_count in pairs:
count = l.count(index)
more_needed = desired_count - count
if more_needed<0:
return False
num_remaining -= more_needed
if num_remaining<0:
return False
return True
plausible_func = plausible_suffix
def generate_magic(N):
l=[0]
while l:
extend = False
if plausible_func(l,N):
if len(l)==N:
yield l[::-1]
else:
extend = True
if extend:
l.append(0)
else:
while l[-1]>=N-2:
l.pop(-1)
if not l:raise StopIteration
l[-1]+=1
n=40 #test parameter
if n>0:
for x in generate_magic(n):
print(n,x)
Lakukan pencarian pertama dari daftar yang mungkin, mengisi entri dari kanan ke kiri, menghentikan pencarian pada akhiran jika tidak masuk akal, yang dapat terjadi jika:
- Jumlah entri dalam sufiks melebihi
n
(jumlah untuk seluruh daftar harus n
)
- Jumlah tertimbang
i*l[i]
dalam sufiks melebihi n
(jumlah untuk seluruh daftar harus n
)
- Angka apa pun muncul di akhiran lebih dari yang sufiks katakan seharusnya
- Jumlah tempat yang belum terisi yang tersisa terlalu kecil untuk memperhitungkan semua angka yang perlu lebih sering muncul.
Saya memiliki awalan yang diuji asli dari kiri ke kanan, tetapi itu berjalan lebih lambat.
Output hingga n=30
adalah:
4 [1, 2, 1, 0]
4 [2, 0, 2, 0]
5 [2, 1, 2, 0, 0]
7 [3, 2, 1, 1, 0, 0, 0]
8 [4, 2, 1, 0, 1, 0, 0, 0]
9 [5, 2, 1, 0, 0, 1, 0, 0, 0]
10 [6, 2, 1, 0, 0, 0, 1, 0, 0, 0]
11 [7, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0]
12 [8, 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0]
13 [9, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
14 [10, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
15 [11, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
16 [12, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
17 [13, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
18 [14, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
19 [15, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
20 [16, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
21 [17, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
22 [18, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
23 [19, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
24 [20, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
25 [21, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
26 [22, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
27 [23, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
28 [24, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
29 [25, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
30 [26, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
Kecuali untuk tiga daftar pertama [1, 2, 1, 0], [2, 0, 2, 0], [2, 1, 2, 0, 0]
, hanya ada satu daftar dari masing-masing panjang n>6
, dan memiliki bentuk [n-4, 2, 1, ..., 0, 0, 1, 0, 0, 0]
. Pola ini setidaknya bertahan hingga setidaknya n=50
. Saya menduga itu berlaku selamanya, dalam hal ini sepele untuk menghasilkan sejumlah besar ini. Bahkan jika tidak, pemahaman matematis tentang solusi yang mungkin akan sangat mempercepat pencarian.