Ceylon / Ceylon, 49,86 40,95 poin
Versi ketiga menggunakan Ceylon 1.2 untuk generator dan 509 byte kode:
import ceylon.language{S=String,I=Integer,e=expand}S q(I n)=>n==0then"0"else(n<0then"-"+p(-n,"-")else p(n,"+"));variable Map<[I,S],S>c=map{};S p(I n,S s){S v=c[[n,s]]else(n<8then s.join([1].repeat(n)))else(let(a="+-".replace(s,""))e(e{for(x in 2..8)let(l=(n^(1.0/x)).integer){for(r in l:2)if(r>1)let(w=r^x){if(w-n<n)"("+p(r,"+")+")^("+p(x,"+")+")"+(w<n then s+p(n-w,s)else(n<w then a+p(w-n,a)else""))}}}).reduce<S>((x,y)=>x.size<y.size then x else y))else"";c=[n,s]in c then c else map{[n,s]->v,*c};return v;}
Ini turun menjadi 35,22 poin, tapi saya tidak akan menempatkan ini di baris judul karena Celyon 1.2 hanya diterbitkan pada 29 Oktober. Saya tidak berpikir saya akan dapat mengimplementasikan algoritma ini dalam Ceylon 1.1 dalam ukuran ini.). Lebih detail di sana, di sini saya akan menjelaskan versi kedua. (Versi pertama dapat dilihat dalam sejarah - versi ini hanya mendukung angka positif, tetapi cocok dengan 256 byte.)
Versi kedua
Sekarang versi kedua, yang mendukung bilangan bulat negatif (dan 0), dan umumnya menghasilkan keluaran yang sedikit lebih pendek dengan menggunakan tambahan -
. (Versi ini sebenarnya menggunakan panjang yang diizinkan, yang pertama mencoba untuk tetap di bawah 256 byte, bukan 512.)
String proof(Integer n) {
if (n == 0) { return "0"; }
if (n < 0) { return "-" + p(-n, "-"); }
return p(n, "+");
}
String p(Integer n, String sign) {
if (n < 9) {
return sign.join([1].repeat(n));
}
value anti = (sign == "+") then "-" else "+";
value root = ((n^0.5) + 0.5).integer;
return "(" + p(root, "+") + ")^(1+1)" +
( (root^2 < n) then sign + p(n - root^2, sign) else
((n < root^2) then anti + p(root^2 - n, anti) else ""));
}
Kode memiliki panjang 487, jadi masih ada ruang untuk optimisasi lebih lanjut nanti. (Ada juga banyak cadangan dalam bentuk spasi putih dan nama variabel panjang.)
Skor:
Total positive: 42652
Average positive:42.652
Total negative: 43653
Average negative: 43.60939060939061
With bonus:39.24845154845155
Overall score: 40.95022577422577
Beberapa output sampel:
27: 21: (1+1+1+1+1)^(1+1)+1+1
28: 23: (1+1+1+1+1)^(1+1)+1+1+1
29: 25: (1+1+1+1+1)^(1+1)+1+1+1+1
30: 27: (1+1+1+1+1)^(1+1)+1+1+1+1+1
31: 29: (1+1+1+1+1+1)^(1+1)-1-1-1-1-1
32: 27: (1+1+1+1+1+1)^(1+1)-1-1-1-1
33: 25: (1+1+1+1+1+1)^(1+1)-1-1-1
34: 23: (1+1+1+1+1+1)^(1+1)-1-1
-27: 22: -(1+1+1+1+1)^(1+1)-1-1
-28: 24: -(1+1+1+1+1)^(1+1)-1-1-1
-29: 26: -(1+1+1+1+1)^(1+1)-1-1-1-1
-30: 28: -(1+1+1+1+1)^(1+1)-1-1-1-1-1
-31: 30: -(1+1+1+1+1+1)^(1+1)+1+1+1+1+1
-32: 28: -(1+1+1+1+1+1)^(1+1)+1+1+1+1
-33: 26: -(1+1+1+1+1+1)^(1+1)+1+1+1
-34: 24: -(1+1+1+1+1+1)^(1+1)+1+1
993: 65: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1+1)^(1+1)+1+1+1+1+1
994: 63: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)-1-1-1-1-1
995: 61: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)-1-1-1-1
996: 59: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)-1-1-1
997: 57: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)-1-1
998: 55: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)-1
999: 53: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)
1000: 55: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)+1
-993: 66: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1+1)^(1+1)-1-1-1-1-1
-994: 64: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)+1+1+1+1+1
-995: 62: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)+1+1+1+1
-996: 60: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)+1+1+1
-997: 58: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)+1+1
-998: 56: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)+1
-999: 54: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)
-1000: 56: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)-1
1: 1: 1
2: 3: 1+1
3: 5: 1+1+1
4: 7: 1+1+1+1
5: 9: 1+1+1+1+1
6: 11: 1+1+1+1+1+1
7: 13: 1+1+1+1+1+1+1
8: 15: 1+1+1+1+1+1+1+1
9: 13: (1+1+1)^(1+1)
10: 15: (1+1+1)^(1+1)+1
0: 1: 0
-1: 2: -1
-2: 4: -1-1
-3: 6: -1-1-1
-4: 8: -1-1-1-1
-5: 10: -1-1-1-1-1
-6: 12: -1-1-1-1-1-1
-7: 14: -1-1-1-1-1-1-1
-8: 16: -1-1-1-1-1-1-1-1
-9: 14: -(1+1+1)^(1+1)
-10: 16: -(1+1+1)^(1+1)-1
Seperti yang Anda lihat, yang negatif selalu satu byte (yang -
lebih dulu) lebih lama dari yang positif.
Ide dasarnya sama dengan program sebelumnya: temukan kotak di dekat nomor target kami, dan tampilkan akar dan sisanya secara rekursif. Tapi sekarang kami mengizinkan kuadrat kami juga beberapa lebih besar dari jumlah target, yang kemudian membuat sisanya negatif. ( +0.5
Dapat diubah ke konstanta yang berbeda untuk mengubah algoritma, tetapi tampaknya saya sudah mencapai yang optimal di sini - baik 0,4 dan 0,6 memberikan hasil yang lebih buruk.)
Untuk membuat nilai negatif negatif (dan selain itu memiliki struktur yang sama dengan yang positif, kami meneruskan operator sign
ke fungsi rekursif kami p
- baik itu "+"
atau "-"
. Kita dapat menggunakannya untuk joiner dalam kasus sepele (yaitu n <9) juga adapun sisanya jika positif, dan gunakan tanda sebaliknya untuk sisanya jika negatif.
The proof
menangani fungsi awal tanda (dengan kasus khusus untuk 0), p
fungsi melakukan pekerjaan yang sebenarnya, dengan rekursi.
Versi ketiga, untuk Ceylon 1.2
import ceylon.language { S=String, I=Integer,e=expand }
// output a base-proof Ceylon expression for an integer
// (i.e. using only 0 and 1 as digits).
//
// Question: http://codegolf.stackexchange.com/q/58084/2338
// My Answer: http://codegolf.stackexchange.com/a/58122/2338
//
// The goal is to produce an expression as short as possible, with
// the code staying under 512 bytes in length.
//
// This approach is to represent a positive integer as a square
// of a positive integer plus some remainder (where the remainder
// can be negative), and for negative integers replace the + on the
// outer level by -.
S q(I n) =>
n == 0 then "0"
else (n < 0 then "-" + p(-n, "-")
else p(n, "+"));
// cache for values of p
variable Map<[I, S],S> c = map { };
// Transforms a positive number into a base-proof term, using
// the given sign for the summation on the outer level.
S p(I n, S s) {
S v =
// look into the cache
c[[n, s]] else (
// hard-code small numbers
n < 8 then s.join([1].repeat(n)))
else
// do the complicated stuff
(let (a = "+-".replace(s,""))
e(e {
for (x in 2..8) // try these exponents
let (l = (n ^ (1.0 / x)).integer) // \[ sqrt[exp]{n} \] in LaTeX
{ for (r in l:2) // lowerRoot, lowerRoot + 1
if (r > 1)
let (w = r ^ x)
{ if (w-n < n) // avoid recursion to larger or same number
// format the string as r^x + (n-w)
"(" + p(r, "+") + ")^(" + p(x, "+") + ")" +
(w < n then s + p(n - w, s)
else (n < w then a + p(w - n, a)
else ""))
} } })
// and now find the shortest formatted string
.reduce<S>((x, y) => x.size < y.size then x else y))
// this should never happen, but we can't tell the compiler
// that at least some of the iterables are non-empty due to the if clause.
else "";
// this builds a new cache in each step – quite wasteful,
// as this also happens when the value was found in the cache,
// but we don't have more characters remaining.
//// c = map { [n, s] -> v, *c };
///better way:
c = [n,s] in c then c else map{[n,s]->v, *c};
return v;
}
Versi golf (yaitu komentar dan spasi kosong dihapus) diposting di bagian atas, tepatnya 509 byte kode.
Ini menggunakan prinsip dasar yang sama dengan versi kedua, tetapi alih-alih hanya kuadrat, ia juga mencoba menggunakan kekuatan angka yang lebih tinggi (mencoba eksponen dari 2 hingga 8), dan menggunakan hasil terpendek. Itu juga cache hasil, karena kalau tidak, ini akan sangat lambat untuk nomor yang lebih besar dengan banyak panggilan rekursif.
Mencetak:
Total positive: 36622
Average positive: 36.622
Total negative: 37623
Average negative: 37.58541458541458
With bonus:33.826873126873124
Overall score: 35.22443656343656
Konstruksi lekukan besar di tengah adalah tiga pemahaman yang tersusun berulang, dua batin di dalam ekspresi let. Ini kemudian diuji menggunakan fungsi memperluas dua kali, dan reduce
fungsi menemukan yang terpendek dari string itu.
Saya telah mengajukan permintaan fitur untuk dapat melakukan ini dalam satu pemahaman.
Di dalam pemahaman, kita sedang membangun string dari root r
, eksponen x
dan sisanya ( n-w
atau w-n
).
The let
ekspresi dan map
fungsi baru di Ceylon 1.2. map
bisa digantikan oleh HashMap
(yang akan membutuhkan lebih banyak karakter untuk impor, meskipun mungkin akan lebih cepat, karena saya tidak akan membuat peta baru untuk setiap entri baru). The let
ekspresi seperti let (w = r ^ x)
harus diganti dengan menggunakan if
klausa seperti if(exists w = true then r ^ x)
(dan kemudian aku tidak akan diperlukan dua expand
panggilan baik), tapi ini masih akan sedikit lebih lama, tidak pas dalam 511 byte diperbolehkan.
Di sini sampel keluaran sesuai dengan yang dipilih di atas, semuanya kecuali jumlah yang sangat kecil lebih pendek:
27: 15: (1+1+1)^(1+1+1)
28: 17: (1+1+1)^(1+1+1)+1
29: 19: (1+1+1)^(1+1+1)+1+1
30: 21: (1+1)^(1+1+1+1+1)-1-1
31: 19: (1+1)^(1+1+1+1+1)-1
32: 17: (1+1)^(1+1+1+1+1)
33: 19: (1+1)^(1+1+1+1+1)+1
34: 21: (1+1)^(1+1+1+1+1)+1+1
-27: 16: -(1+1+1)^(1+1+1)
-28: 18: -(1+1+1)^(1+1+1)-1
-29: 20: -(1+1+1)^(1+1+1)-1-1
-30: 22: -(1+1)^(1+1+1+1+1)+1+1
-31: 20: -(1+1)^(1+1+1+1+1)+1
-32: 18: -(1+1)^(1+1+1+1+1)
-33: 20: -(1+1)^(1+1+1+1+1)-1
-34: 22: -(1+1)^(1+1+1+1+1)-1-1
993: 39: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1-1-1-1-1-1
994: 37: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1-1-1-1-1
995: 35: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1-1-1-1
996: 33: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1-1-1
997: 31: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1-1
998: 29: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1
999: 27: ((1+1+1)^(1+1)+1)^(1+1+1)-1
1000: 25: ((1+1+1)^(1+1)+1)^(1+1+1)
-993: 40: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1+1+1+1+1+1
-994: 38: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1+1+1+1+1
-995: 36: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1+1+1+1
-996: 34: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1+1+1
-997: 32: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1+1
-998: 30: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1
-999: 28: -((1+1+1)^(1+1)+1)^(1+1+1)+1
-1000: 26: -((1+1+1)^(1+1)+1)^(1+1+1)
1: 1: 1
2: 3: 1+1
3: 5: 1+1+1
4: 7: 1+1+1+1
5: 9: 1+1+1+1+1
6: 11: 1+1+1+1+1+1
7: 13: 1+1+1+1+1+1+1
8: 13: (1+1)^(1+1+1)
9: 13: (1+1+1)^(1+1)
10: 15: (1+1+1)^(1+1)+1
0: 1: 0
-1: 2: -1
-2: 4: -1-1
-3: 6: -1-1-1
-4: 8: -1-1-1-1
-5: 10: -1-1-1-1-1
-6: 12: -1-1-1-1-1-1
-7: 14: -1-1-1-1-1-1-1
-8: 14: -(1+1)^(1+1+1)
-9: 14: -(1+1+1)^(1+1)
-10: 16: -(1+1+1)^(1+1)-1
Sebagai contoh, sekarang kita memiliki 1000 = (3 ^ 2 + 1) ^ 3, bukan 1000 = (6 ^ 2-4) ^ 2-5 ^ 2 + 1.
0
atau1
secara default?