Python, 24 langkah (sedang berlangsung)
Idenya adalah untuk memecahkan masalah berkelanjutan pertama, sangat mengurangi ruang pencarian, dan kemudian mengukur hasilnya ke grid (dengan hanya membulatkan ke gridpoint terdekat dan mencari 8 kotak di sekitarnya)
Saya parametrize jalan sebagai jumlah fungsi trigonometrik (tidak seperti polinomial, mereka tidak berbeda dan lebih mudah untuk tetap di cek). Saya juga mengontrol kecepatan secara langsung daripada akselerasi, karena lebih mudah untuk menegakkan kondisi batas dengan hanya mengalikan fungsi pembobotan yang cenderung 0 pada akhirnya.
Fungsi obyektif saya terdiri dari
skor -eksponensial untuk akselerasi>
skor 10 -polynomial untuk jarak euclidean antara titik terakhir dan target
- skor konstan tinggi untuk setiap persimpangan dengan dinding, menurun ke arah tepi dinding
Untuk meminimalkan skor, saya membuang semuanya ke dalam optimasi Nelder-Mead dan tunggu beberapa detik. Algoritme selalu berhasil mencapai akhir, berhenti di sana dan tidak melebihi percepatan maksimum, tetapi memiliki masalah dengan dinding. Jalur tersebut dapat diteleportasi melalui sudut-sudut dan terjebak di sana, atau berhenti di sebelah dinding dengan tujuan tepat di seberang (gambar kiri)
Selama pengujian, saya beruntung dan menemukan jalur yang dililit dengan cara yang menjanjikan (gambar kanan) dan setelah mengubah parameter lagi saya bisa menggunakannya sebagai tebakan awal untuk optimasi yang sukses.
Kuantisasi
Setelah menemukan lintasan parametrik, tiba saatnya untuk menghapus titik desimal. Melihat lingkungan 3x3 mengurangi ruang pencarian dari sekitar 300 ^ N menjadi 9 ^ N, tetapi masih terlalu besar dan membosankan untuk diterapkan. Sebelum saya menyusuri jalan ini, saya mencoba menambahkan istilah "Snap to Grid" ke fungsi objektif (bagian komentar). Seratus langkah lagi pengoptimalan dengan tujuan yang diperbarui dan hanya pembulatan sudah cukup untuk mendapatkan solusi.
[(9, -1), (4, 0), (1, 1), (2, 2), (-1, 2), (-3, 4), (-3, 3), (-2 , 3), (-2, 2), (-1, 1), (0, 0), (1, -2), (2, -3), (2, -2), (3, -5 ), (2, -4), (1, -5), (-2, -3), (-2, -4), (-3, -9), (-4, -4), (- 5, 8), (-4, 8), (5, 8)]
Jumlah langkah telah diperbaiki dan bukan bagian dari optimasi, tetapi karena kami memiliki deskripsi analitis jalur, (dan karena akselerasi maksimal jauh di bawah 10), kami dapat menggunakannya kembali sebagai titik awal untuk optimasi lebih lanjut dengan jumlah yang lebih kecil dari timesteps
from numpy import *
from scipy.optimize import fmin
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection as LC
walls = array([[[0,0],[500,0]], # [[x0,y0],[x1,y1]]
[[500,0],[500,400]],
[[500,400],[0,400]],
[[0,400],[0,0]],
[[200,200],[100,200]],
[[100,200],[100,100]],
[[100,100],[200,100]],
[[250,300],[250,200]],
[[300,300],[300,100]],
[[300,200],[400,200]],
[[300,100],[400,100]],
[[100,180],[120, 200]], #debug walls
[[100,120],[120, 100]],
[[300,220],[320, 200]],
#[[320,100],[300, 120]],
])
start = array([120,180])
goal = array([320,220])
###################################
# Boring stuff below, scroll down #
###################################
def weightedintersection2D(L1, L2):
# http://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect
p = L1[0]
q = L2[0]
r = L1[1]-L1[0]
s = L2[1]-L2[0]
d = cross(r,s)
if d==0: # parallel
if cross(q-p,r)==0: return 1 # overlap
else:
t = cross(q-p,s)*1.0/d
u = cross(q-p,r)*1.0/d
if 0<=t<=1 and 0<=u<=1: return 1-0*abs(t-.5)-1*abs(u-.5) # intersect at p+tr=q+us
return 0
def sinsum(coeff, tt):
'''input: list of length 2(2k+1),
first half for X-movement, second for Y-movement.
Of each, the first k elements are sin-coefficients
the next k+1 elements are cos-coefficients'''
N = len(coeff)/2
XS = [0]+list(coeff[:N][:N/2])
XC = coeff[:N][N/2:]
YS = [0]+list(coeff[N:][:N/2])
YC = coeff[N:][N/2:]
VX = sum([XS[i]*sin(tt*ww[i]) + XC[i]*cos(tt*ww[i]) for i in range(N/2+1)], 0)
VY = sum([YS[i]*sin(tt*ww[i]) + YC[i]*cos(tt*ww[i]) for i in range(N/2+1)], 0)
return VX*weightfunc, VY*weightfunc
def makepath(vx, vy):
# turn coordinates into line segments, to check for intersections
xx = cumsum(vx)+start[0]
yy = cumsum(vy)+start[1]
path = []
for i in range(1,len(xx)):
path.append([[xx[i-1], yy[i-1]],[xx[i], yy[i]]])
return path
def checkpath(path):
intersections = 0
for line1 in path[:-1]: # last two elements are equal, and thus wrongly intersect each wall
for line2 in walls:
intersections += weightedintersection2D(array(line1), array(line2))
return intersections
def eval_score(coeff):
# tweak everything for better convergence
vx, vy = sinsum(coeff, tt)
path = makepath(vx, vy)
score_int = checkpath(path)
dist = hypot(*(path[-1][1]-goal))
score_pos = abs(dist)**3
acc = hypot(diff(vx), diff(vy))
score_acc = sum(exp(clip(3*(acc-10), -10,20)))
#score_snap = sum(abs(diff(vx)-diff(vx).round())) + sum(abs(diff(vy)-diff(vy).round()))
print score_int, score_pos, score_acc#, score_snap
return score_int*100 + score_pos*.5 + score_acc #+ score_snap
######################################
# Boring stuff above, scroll to here #
######################################
Nw = 4 # <3: paths not squiggly enough, >6: too many dimensions, slow
ww = [1*pi*k for k in range(Nw)]
Nt = 30 # find a solution with tis many steps
tt = linspace(0,1,Nt)
weightfunc = tanh(tt*30)*tanh(30*(1-tt)) # makes sure end velocity is 0
guess = random.random(4*Nw-2)*10-5
guess = array([ 5.72255365, -0.02720178, 8.09631272, 1.88852287, -2.28175362,
2.915817 , 8.29529905, 8.46535503, 5.32069444, -1.7422171 ,
-3.87486437, 1.35836498, -1.28681144, 2.20784655]) # this is a good start...
array([ 10.50877078, -0.1177561 , 4.63897574, -0.79066986,
3.08680958, -0.66848585, 4.34140494, 6.80129358,
5.13853914, -7.02747384, -1.80208349, 1.91870184,
-4.21784737, 0.17727804]) # ...and it returns this solution
optimsettings = dict(
xtol = 1e-6,
ftol = 1e-6,
disp = 1,
maxiter = 1000, # better restart if not even close after 300
full_output = 1,
retall = 1)
plt.ion()
plt.axes().add_collection(LC(walls))
plt.xlim(-10,510)
plt.ylim(-10,410)
path = makepath(*sinsum(guess, tt))
plt.axes().add_collection(LC(path, color='red'))
plt.plot(*start, marker='o')
plt.plot(*goal, marker='o')
plt.show()
optres = fmin(eval_score, guess, **optimsettings)
optcoeff = optres[0]
#for c in optres[-1][::optimsettings['maxiter']/10]:
for c in array(optres[-1])[logspace(1,log10(optimsettings['maxiter']-1), 10).astype(int)]:
vx, vy = sinsum(c, tt)
path = makepath(vx,vy)
plt.axes().add_collection(LC(path, color='green'))
plt.show()
Aktivitas: GUI yang memungkinkan Anda menggambar jalur awal untuk mendapatkan arah yang kasar. Apa pun lebih baik daripada pengambilan sampel acak dari ruang 14 dimensi