Sebuah matriks bolak tanda adalah n
dengan n
matriks yang terdiri dari angka -1, 0, 1, sehingga:
- Jumlah setiap baris dan kolom adalah 1
- Entri bukan nol di setiap baris dan kolom bergantian masuk
Matriks-matriks ini menggeneralisasi matriks permutasi, dan jumlah matriks seperti itu untuk suatu waktu tertentu n
menarik. Mereka terjadi secara alami selama metode kondensasi Dodgson menghitung determinan matriks (dinamai Charles Dodgson, lebih dikenal sebagai Lewis Carroll).
Berikut adalah beberapa contoh dari 4 oleh 4 matriks tanda bergantian:
0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 0 0 1 -1 1 1 0 -1 1
1 0 0 0 0 1 -1 1 1 -1 1 0 0 1 0 0
0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0
Dan berikut adalah beberapa contoh dari 4 oleh 4 matriks yang tidak bergantian matriks tanda:
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 -1 (last row and last column don't add to 1)
0 0 0 1
1 0 0 0
-1 1 1 0
1 0 0 0 (third row does not alternate correctly)
Program atau fungsi Anda akan diberikan n
oleh n
matriks ( n >= 1
) dari -1s, 0s dan 1s - output nilai yang benar jika matriks yang diberikan adalah matriks tanda bolak-balik, jika tidak output nilai palsu.
Ini adalah kode-golf , jadi tujuannya adalah untuk meminimalkan jumlah byte yang digunakan.
Uji kasus
Kasing uji berikut diberikan dalam format daftar 2D seperti Python.
Benar:
[[1]]
[[1,0],[0,1]]
[[0,1],[1,0]]
[[0,1,0],[0,0,1],[1,0,0]]
[[0,1,0],[1,-1,1],[0,1,0]]
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
[[0,0,1,0,0,0,0,0],[1,0,-1,0,1,0,0,0],[0,0,0,1,-1,0,0,1],[0,0,1,-1,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,0,0,0,0,0]]
[[0,0,0,0,1,0,0,0],[0,0,1,0,-1,1,0,0],[0,0,0,1,0,0,0,0],[1,0,0,-1,1,-1,1,0],[0,1,-1,1,-1,1,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1]]
Falsy:
[[0]]
[[-1]]
[[1,0],[0,0]]
[[0,0],[0,1]]
[[-1,1],[1,0]]
[[0,1],[1,-1]]
[[0,0,0],[0,0,0],[0,0,0]]
[[0,1,0],[1,0,1],[0,1,0]]
[[-1,1,1],[1,-1,1],[1,1,-1]]
[[0,0,1],[1,0,0],[0,1,-1]]
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,-1]]
[[0,0,1,0],[0,0,1,0],[1,0,-1,1],[0,1,0,0]]
[[0,0,0,1],[1,0,0,0],[-1,1,1,0],[1,0,0,0]]
[[1,0,1,0,-1],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,0,0,1]]
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,1,-1,0],[0,0,-1,1,1]]
[[0,-1,0,1,1],[1,-1,1,-1,1],[0,1,1,0,-1],[1,1,-1,1,-1],[-1,1,0,0,1]]
[[0,0,1,0,0,0,0,0],[1,0,1,0,1,0,0,0],[0,0,0,1,-1,0,0,1],[0,0,1,-1,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,0,0,0,0,0]]