Python, 1281.375 1268.625 byte
Kami menyandikan satu "keputusan" dalam kotak Latin pada satu waktu, di mana setiap keputusan dari salah satu dari tiga bentuk ini:
- nomor mana yang masuk dalam baris i , kolom j ;
- di baris i , kolom mana yang digunakan k ;
- di kolom j , baris yang mana angka k dimasukkan.
Pada setiap langkah, kami membuat semua kesimpulan logis yang kami dapat berdasarkan pada keputusan sebelumnya, lalu mengambil keputusan dengan jumlah pilihan sekecil mungkin, yang karenanya mengambil jumlah bit terkecil untuk diwakili.
Pilihan disediakan oleh dekoder aritmatika sederhana (div / mod dengan jumlah pilihan). Tapi itu meninggalkan beberapa redundansi dalam pengkodean: jika k decode ke kotak di mana produk dari semua jumlah pilihan adalah m , maka k + m , k + 2⋅ m , k + 3⋅ m , ... decode ke kotak yang sama dengan beberapa kondisi sisa di akhir.
Kami memanfaatkan redundansi ini untuk menghindari penyandian ukuran persegi secara eksplisit. Dekompresor dimulai dengan mencoba men-decode kuadrat ukuran 1. Setiap kali decoder selesai dengan status sisa, ia membuang hasil itu, mengurangi m dari angka asli, menambah ukurannya dengan 1, dan mencoba lagi.
import numpy as np
class Latin(object):
def __init__(self, size):
self.size = size
self.possible = np.full((size, size, size), True, dtype=bool)
self.count = np.full((3, size, size), size, dtype=int)
self.chosen = np.full((3, size, size), -1, dtype=int)
def decision(self):
axis, u, v = np.unravel_index(np.where(self.chosen == -1, self.count, self.size).argmin(), self.count.shape)
if self.chosen[axis, u, v] == -1:
ws, = np.rollaxis(self.possible, axis)[:, u, v].nonzero()
return axis, u, v, list(ws)
else:
return None, None, None, None
def choose(self, axis, u, v, w):
t = [u, v]
t[axis:axis] = [w]
i, j, k = t
assert self.possible[i, j, k]
assert self.chosen[0, j, k] == self.chosen[1, i, k] == self.chosen[2, i, j] == -1
self.count[1, :, k] -= self.possible[:, j, k]
self.count[2, :, j] -= self.possible[:, j, k]
self.count[0, :, k] -= self.possible[i, :, k]
self.count[2, i, :] -= self.possible[i, :, k]
self.count[0, j, :] -= self.possible[i, j, :]
self.count[1, i, :] -= self.possible[i, j, :]
self.count[0, j, k] = self.count[1, i, k] = self.count[2, i, j] = 1
self.possible[i, j, :] = self.possible[i, :, k] = self.possible[:, j, k] = False
self.possible[i, j, k] = True
self.chosen[0, j, k] = i
self.chosen[1, i, k] = j
self.chosen[2, i, j] = k
def encode_sized(size, square):
square = np.array(square, dtype=int)
latin = Latin(size)
chosen = np.array([np.argmax(square[:, :, np.newaxis] == np.arange(size)[np.newaxis, np.newaxis, :], axis=axis) for axis in range(3)])
num, denom = 0, 1
while True:
axis, u, v, ws = latin.decision()
if axis is None:
break
w = chosen[axis, u, v]
num += ws.index(w)*denom
denom *= len(ws)
latin.choose(axis, u, v, w)
return num
def decode_sized(size, num):
latin = Latin(size)
denom = 1
while True:
axis, u, v, ws = latin.decision()
if axis is None:
break
if not ws:
return None, 0
latin.choose(axis, u, v, ws[num % len(ws)])
num //= len(ws)
denom *= len(ws)
return latin.chosen[2].tolist(), denom
def compress(square):
size = len(square)
assert size > 0
num = encode_sized(size, square)
while size > 1:
size -= 1
square, denom = decode_sized(size, num)
num += denom
return '{:b}'.format(num + 1)[1:]
def decompress(bits):
num = int('1' + bits, 2) - 1
size = 1
while True:
square, denom = decode_sized(size, num)
num -= denom
if num < 0:
return square
size += 1
total = 0
with open('latin_squares.txt') as f:
while True:
square = [list(map(int, l.split(','))) for l in iter(lambda: next(f), '\n')]
if not square:
break
bits = compress(square)
assert set(bits) <= {'0', '1'}
assert square == decompress(bits)
print('Square {}: {} bits'.format(len(square), len(bits)))
total += len(bits)
print('Total: {} bits = {} bytes'.format(total, total/8.0))
Keluaran:
Square 1: 0 bits
Square 2: 1 bits
Square 3: 3 bits
Square 4: 8 bits
Square 5: 12 bits
Square 6: 29 bits
Square 7: 43 bits
Square 8: 66 bits
Square 9: 94 bits
Square 10: 122 bits
Square 11: 153 bits
Square 12: 198 bits
Square 13: 250 bits
Square 14: 305 bits
Square 15: 363 bits
Square 16: 436 bits
Square 17: 506 bits
Square 18: 584 bits
Square 19: 674 bits
Square 20: 763 bits
Square 21: 877 bits
Square 22: 978 bits
Square 23: 1097 bits
Square 24: 1230 bits
Square 25: 1357 bits
Total: 10149 bits = 1268.625 bytes
0
meskipunn-1
:)