Buat program C yang membutuhkan waktu paling lama untuk dikompilasi dalam gcc


27

Buat program C pendek yang membutuhkan waktu sangat lama untuk dikompilasi dengan gcc. Entri akan dinilai dengan menghitung waktu kompilasi kemudian mengurangi waktu kompilasi program referensi.

Aturan

  • Setiap fitur bahasa C atau ekstensi gcc
  • gcc 4.2.1

1
Mengubah penandaan karena [code-golf] secara eksplisit berarti "kode korsleting oleh (kunci) jumlah pukulan".
dmckee

6
Membagi dengan jumlah karakter tidak masuk akal, karena setiap pendekatan yang masuk akal untuk tantangan ini tentu saja akan memiliki waktu kompilasi-kompleksitas yang lebih besar O ( n ), yaitu skor dari solusi apa pun dapat ditingkatkan secara sepele hanya dengan membuatnya sedikit lebih lama, yang mungkin akan selalu dimungkinkan dengan cara yang jelas.
lagi mengaktifkan counterclock pada

Jawaban:


13
#define a "xxxxxxxxxxx"
#define b a a a a a a a
#define c b b b b b b b
#define d c c c c c c c
#define e d d d d d d d
#define f e e e e e e e
#define g f f f f f f f
#define h g g g g g g g
#define i h h h h h h h
#define j i i i i i i i
z=j;

Tidak mengkompilasi pada mesin saya
FUZxxl

19
Minimal baris terakhir perlu diubah menjadi sesuatu seperti main(){char*z=j;}menjadikan ini program yang valid.
dmckee

2
VS2012 saya keluar dari ruang tumpukan. Saya kira /Zmakan memperbaikinya
rev

13

Baik jawaban Charlie maupun yang sebelumnya saya kerjakan dengan prinsip membiarkan pra-prosesor menulis banyak kode, tetapi mereka kebanyakan menggunakan pra-prosesor itu sendiri, lexer (ide bagus karena langkah ini biasanya lambat) dan pengurai. Milik saya juga mencoba untuk melakukan langkah-langkah optimasi dan pembuatan kode, tetapi jelas tidak mendapatkan banyak di sana.

Berpikir tentang cara kerja c compiler biasa, saya menyadari bahwa kami tidak memberikan kode terkait tabel simbol apa pun untuk dilakukan. Entri ini merupakan upaya untuk memperbaiki itu. Seharusnya mengingatkan pada objek-orientasi dasar dalam implementasi c, tetapi tidak melakukan sesuatu yang menarik: membenarkan teknik ekspansi pra-prosesor untuk mendeklarasikan dan secara sepele (dan salah) menginisialisasi sekelompok objek. Objek yang menggunakan tipe rumit, pada berbagai tingkat ruang lingkup, saling membayangi di berbagai penghapusan. Seharusnya memberi tabel simbol kerja nyata.

#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
// Exercise the symbol table mechanism of the compiler in an effort to
// take a unreasonable about of time compiling

#define PTR(T) T*
#define CONST(T) T const
#define FUNC(NAME,RTYPE,ARG) RTYPE NAME(ARG)
#define FPTR(NAME,RTYPE,ARG) FUNC((*NAME),RTYPE,ARG)

// Forward decalration of repeated OO method pointers
typedef void* (*cctor_ptr)(void*this, void*that, ...);
typedef void* (*dtor_ptr)(void*this);

// Assumes three var-args: sizeof(payload type), cctor, dtor
void* default_ctor(void*this, ...){
  // Pull in variadac bits
  va_list list;
  va_start(list,this);
  int size=va_arg(list,int);
  cctor_ptr cctor=va_arg(list,cctor_ptr);
  dtor_ptr dtor=va_arg(list,dtor_ptr);
  va_end(list);
  // process
  if (!this) this = malloc(size);
  if (this) {
    memset(this,size,0);
    /* various dodges to install the cctor and dtor in the write places */
  }
  return this;
}
// Copies the payload from that to this; 
void* default_cctor(void*restrict this, void* restrict that, ...){
  // Pull in variadac bits
  va_list list;
  va_start(list,that);
  int size=va_arg(list,int);
  cctor_ptr cctor=va_arg(list,cctor_ptr);
  dtor_ptr dtor=va_arg(list,dtor_ptr);
  va_end(list);
  // process
  if (!this) this = malloc(size);
  if (this) {
    memcpy(this,that,size);
    /* various dodges to install the cctor and dtor in the write places */
  }
  return this;
}
// Assumes that his was allocated with malloc, does not use varargs
void* default_dtor(void*this, ...){
  free(this); 
  return NULL;
};

#define DECLARE_STRUCT(N) struct S##N##_s
#define TYPEDEF_ACCESSOR(N,T) typedef FPTR(f##N##_ptr,CONST(PTR(T)),PTR(CONST(struct S##N##_s)))
#define TYPEDEF_STRUCT(N,T) typedef struct S##N##_s {PTR(T)p; cctor_ptr cctor; dtor_ptr dtor; f##N##_ptr f##N;} S##N
#define OO_STRUCT(N,T) DECLARE_STRUCT(N); TYPEDEF_ACCESSOR(N,T); TYPEDEF_STRUCT(N,T)

OO_STRUCT(1,char);
OO_STRUCT(2,int);
OO_STRUCT(3,double*);
OO_STRUCT(4,S3);
OO_STRUCT(5,S4);
OO_STRUCT(6,S5);
OO_STRUCT(7,S6);
OO_STRUCT(8,S7);

#define SUBSCOPE(A) { \
    S1*A##1=default_ctor(NULL,sizeof(char),default_cctor,default_dtor); \
    S2 A##2; default_ctor(&A##2,sizeof(int),default_cctor,default_dtor); \
    S2*A##3=default_ctor(NULL,sizeof(double*),default_cctor,default_dtor); \
    S8 A##5; default_ctor(&A##5,sizeof(S4),default_cctor,default_dtor); \
    S6 A##6; default_ctor(&A##6,sizeof(S5),default_cctor,default_dtor); \
    S8*A##8=default_ctor(NULL,sizeof(S7),default_cctor,default_dtor); \
  }
#define SUBSCOPE2(A,B)  { \
    S2*B##5=default_ctor(NULL,sizeof(S4),default_cctor,default_dtor); \
    S4 A##7; default_ctor(&A##7,sizeof(S6),default_cctor,default_dtor); \
    SUBSCOPE(A) SUBSCOPE(B);                 \
  }
#define SUBSCOPE6(A,B,C)  { \
    S2*A##3=default_ctor(NULL,sizeof(double*),default_cctor,default_dtor); \
    S2 B##2; default_ctor(&B##2,sizeof(int),default_cctor,default_dtor); \
    S4*C##4=NULL;                           \
    SUBSCOPE2(A,C) SUBSCOPE2(B,C) SUBSCOPE2(A,B); \
  }
#define SUBSCOPE24(A,B,C,D) { \
    S1*D##1=default_ctor(NULL,sizeof(char),default_cctor,default_dtor); \
    S2 C##2; default_ctor(&C##2,sizeof(int),default_cctor,default_dtor); \
    S2*B##3=default_ctor(NULL,sizeof(double*),default_cctor,default_dtor); \
    S4 A##4; default_ctor(&A##4,sizeof(S3),default_cctor,default_dtor); \
    SUBSCOPE6(A,B,C) SUBSCOPE6(A,B,D) SUBSCOPE6(A,C,D) SUBSCOPE6(B,C,D); \
  }
#define SUBSCOPE120(A,B,C,D,E) { \
    S5*A##5=default_ctor(NULL,sizeof(S4),default_cctor,default_dtor); \
    S6*A##6=default_ctor(NULL,sizeof(S5),default_cctor,default_dtor); \
    S8 A##8; default_ctor(&A##8,sizeof(S7),default_cctor,default_dtor); \
    SUBSCOPE24(A,B,C,D) SUBSCOPE24(A,B,C,E) SUBSCOPE24(A,B,D,E); \
    SUBSCOPE24(A,C,D,E) SUBSCOPE24(B,C,D,E); \
  }
#define SUBSCOPE720(A,B,C,D,E,F) { \
    S5 A##5; default_ctor(&A##5,sizeof(S4),default_cctor,default_dtor); \
    S6 A##6; default_ctor(&A##6,sizeof(S5),default_cctor,default_dtor); \
    S8*A##8=default_ctor(NULL,sizeof(S7),default_cctor,default_dtor); \
    SUBSCOPE120(A,B,C,D,E) SUBSCOPE120(A,B,C,D,F) SUBSCOPE120(A,B,C,E,F); \
    SUBSCOPE120(A,B,D,E,F) SUBSCOPE120(A,C,D,E,F) SUBSCOPE120(B,C,D,E,F); \
  }

int main(){
  S4 s4;
  SUBSCOPE720(A,B,C,D,E,F)
}

Waktu kompilasi pada mesin saya lebih dari 4 detik dengan -O3dan lebih dari 1 detik tanpa optimasi.


Jelas langkah selanjutnya adalah menyelesaikan implementasi OO untuk kelas BCD dan melakukan kembali perhitungan pi menggunakannya sehingga saya mendapatkan kedua efek berjalan keras.


12

Berikut adalah tema eksponensial-preprocessor-ekspansi yang melakukan sesuatu yang menarik minimal: menghitung dua pendekatan ke pi dengan metode seri dan membandingkannya dengan nilai dalam math.hdan mantra yang biasa.

Tidak disatukan.

#include <math.h>
#include <stdio.h>

// Some random bits we'll need
#define MINUSONODD(n) (n%2?-1:+1)
#define TWON(n) (2*(n))
#define NPLUSONE(n) ((n)+1)
#define TWONPLUSONE(n) NPLUSONE(TWON(n))
#define FACT(n) (tgamma(NPLUSONE(n)))

// The Euler series
//                           2^(2n) * (n!)^2      z^(2n+1)
// atan(z) = \sum_n=0^\infty --------------- * ---------------
//                               (2n+1)!       (1 + z^2)^(n+1)
#define TERMEULER(n,z) (pow(2,TWON(n))*                 \
            FACT(n)*FACT(n)*                \
            pow((z),TWONPLUSONE(n))/            \
            FACT(TWONPLUSONE(n)) /              \
            pow((1+z*z),NPLUSONE(n)) )

// The naive version
//                           (-1)^n * z^(2n+1)
// atan(z) = \sum_n=0^\infty -----------------
//                                2n + 1
#define TERMNAIVE(n,z) (MINUSONODD(n)*pow(z,TWONPLUSONE(n))/TWONPLUSONE(n))


// Define a set of bifruncations of the sum
#define N2TERMS(n,z,ALG)  (TERM##ALG(TWON(n),(z)) + TERM##ALG(TWONPLUSONE(n),(z)))
#define N4TERMS(n,z,ALG)  (N2TERMS(TWON(n),(z),ALG)+N2TERMS(TWONPLUSONE(n),(z),ALG))
#define N8TERMS(n,z,ALG)  (N4TERMS(TWON(n),(z),ALG)+N4TERMS(TWONPLUSONE(n),(z),ALG))
#define N16TERMS(n,z,ALG) (N8TERMS(TWON(n),(z),ALG)+N8TERMS(TWONPLUSONE(n),(z),ALG))
#define N32TERMS(n,z,ALG) (N16TERMS(TWON(n),(z),ALG)+N16TERMS(TWONPLUSONE(n),(z),ALG))

// Sum the fist 32*2+16 = 80 terms of a series...
#define PARTIALSUM(z,ALG) N32TERMS(0,(z),ALG)+N32TERMS(1,(z),ALG)+N16TERMS(4,(z),ALG)


int main(void){
  const double PI_TRAD = 4.0L * atan(1.0);
  const double PI_NAIVE = 4.0L * PARTIALSUM(0.999999L,NAIVE);
  const double PI_EULER = 4.0L * PARTIALSUM(0.999999L,EULER);
  printf("pi (math.h) = %10.8f\n",M_PI);
  printf("pi (trad.)  = %10.8f\n",PI_TRAD);
  printf("pi (NAIVE)  = %10.8f\n",PI_NAIVE);
  printf("pi (EULER)  = %10.8f\n",PI_EULER);
}

Asumsikan bahwa Anda menggunakan gccdan glibcdan mungkin atau mungkin tidak bekerja dengan pengaturan lain. Diperlukan waktu prosesor sekitar 1,0-1,1 detik (dievaluasi dengan time (1)) untuk dikompilasi dengan -031 pada 2,4 GHz Intel Core 2 Duo MacBook saya. Kompilasi default membutuhkan waktu prosesor sekitar 0,4 detik.

Sayangnya, saya tidak dapat meminta gcc untuk mengevaluasi powatau tgammapada waktu kompiler, yang akan sangat membantu.

Ketika Anda menjalankannya, hasilnya adalah:

pi (math.h) = 3.14159265
pi (trad.)  = 3.14159265
pi (NAIVE)  = 3.11503599
pi (EULER)  = 3.14159065

yang menunjukkan betapa lambatnya seri naif bertemu.


1 Untuk mendapatkan sebanyak mungkin lipat dan eliminasi sub-ekspresi sebanyak mungkin.

Dengan menggunakan situs kami, Anda mengakui telah membaca dan memahami Kebijakan Cookie dan Kebijakan Privasi kami.
Licensed under cc by-sa 3.0 with attribution required.