Mengingat bahasa reguler , mempertimbangkan beberapa DFA menerima L , biarkan A menjadi matriks transfer ( A i j adalah jumlah tepi terkemuka dari negara i ke negara j ), biarkan x menjadi vektor karakteristik dari keadaan awal, dan membiarkan y menjadi vektor karakteristik dari negara penerima. Kemudian
s L ( n ) = x T A n y .LLAAijijxy
sL(n)=xTAny.
Teorema Jordan menyatakan bahwa lebih dari bilangan kompleks, mirip dengan matriks dengan blok dari salah satu bentuk
( λ ) , ( λ 1 0 λ ) , ( λ 1 0 0 λ 1 0 0 λ ) , ( λ 1 0 0 0 λ 1 0 0 0 λ 1 0 0 0 λ ) , …
Jika λ ≠ 0 , maka nA
(λ),(λ01λ),⎛⎝⎜λ001λ001λ⎞⎠⎟,⎛⎝⎜⎜⎜λ0001λ0001λ0001λ⎞⎠⎟⎟⎟,…
λ≠0n kekuatan blok-blok ini adalah
Berikut adalah cara kita harus formula ini: menulis blok sebagai
B=λ+N. Kekuatanberturut-turut
Nadalah diagonal sekunder berturut-turut dari matriks. Menggunakan teorema binomial (menggunakan fakta bahwa
λberubah dengan
N),
Bn=(λ+n)N=λ(λn),(λn0nλn−1λn),⎛⎝⎜λn00nλn−1λn0(n2)λn−2nλn−1λn⎞⎠⎟,⎛⎝⎜⎜⎜⎜λn000nλn−1λn00(n2)λn−2nλn−1λn0(n3)λn−3(n2)λn−2nλn−1λn⎞⎠⎟⎟⎟⎟,…
B=λ+NNλNBn=(λ+n)N=λn+nλn−1N+(n2)λn−2N2+⋯.
λ=0[n=k]1n=k0([n=0]),([n=0]0[n=1][n=0]),⎛⎝⎜[n=0]00[n=1][n=0]0[n=2][n=1][n=0]⎞⎠⎟,⎛⎝⎜⎜⎜⎜[n=0]000[n=1][n=0]00[n=2][n=1][n=0]0[n=3][n=2][n=1][n=0]⎞⎠⎟⎟⎟⎟
Summarizing, every entry in An is either of the form (nk)λn−k or of the form [n=k], and we deduce that
sL(n)=∑ipi(n)λni+∑jcj[n=j],
for some complex
λi,cj and complex polynomials
pi. In particular,
for large enough n,
sL(n)=∑ipi(n)λni.
This is the precise statement of the result.
We can go on and obtain asymptotic information about sL(n), but this is surprisingly non-trivial. If there is a unique λi of largest magnitude, say λ1, then
sL(n)=p1(n)λn1(1+o(1)).
Things get more complicated when there are several
λs of largest magnitude. It so happens that their angle must be rational (i.e. up to magnitude, they are roots of unity). If the LCM of the denominators is
d, then the asymptotics of
sL will very according to the remainder of
n modulo
d. For some of these remainders, all
λs of largest magnitude cancel, and then the asymptotics "drops", and we have to iterate this procedure. The interested reader can check the details in Flajolet and Sedgewick's
Analytic Combinatorics, Theorem V.3. They prove that for some
d, integers
p0,…,pd−1 and reals
λ0,…,λd−1,
sL(n)=npn(modd)λnn(modd)(1+o(1)).