Kompleksitas dari Properti Topologis.


27

Saya adalah seorang ilmuwan komputer yang mengambil kursus tentang Topologi (taburan topologi set-point yang penuh dengan teori kontinum). Saya menjadi tertarik pada masalah keputusan yang menguji deskripsi ruang (secara sederhana) untuk properti topologi; yang dipertahankan hingga homeomorfisme.

Diketahui, misalnya, bahwa menentukan genus suatu simpul adalah dalam PSPACE dan NP-Hard. (Agol 2006; Hass, Lagarias, Pippenger 1999)

Hasil lain memiliki lebih merasa lebih umum: AA Markov (putra yang Markov) menunjukkan pada tahun 1958 bahwa pengujian dua ruang untuk homeomorfisma di dimensi atau lebih tinggi diputuskan (dengan menunjukkan undecidability untuk 4-manifold). Sayangnya, contoh terakhir ini bukan contoh yang sempurna dari pertanyaan saya, karena ini berkaitan dengan masalah homeomorphy itu sendiri alih-alih properti yang disimpan di bawah homeomorphism.5

Tampaknya ada sejumlah besar pekerjaan dalam "topologi dimensi rendah": teori simpul dan grafik. Saya pasti tertarik pada hasil dari topologi dimensi rendah, tetapi saya lebih tertarik pada hasil umum (ini tampaknya jarang terjadi).

Saya paling tertarik pada masalah yang rata-rata NP-Hard, tetapi merasa terdorong untuk daftar masalah yang tidak diketahui begitu.

Hasil apa yang diketahui tentang kompleksitas komputasi dari sifat topologi?


1
Bisakah Anda membingkai pertanyaan tertentu?
Suresh Venkat

2
Sebelum seseorang mengajukan keberatan, izinkan saya membela mengapa saya percaya pertanyaan ini spesifik: Saya melakukan pencarian literatur yang biasa dan menemukan relatif sedikit menjawab pertanyaan saya. Karena itu, jawaban atas pertanyaan melibatkan tingkat keahlian tertentu. Selanjutnya, topologi komputasi tidak dapat disangkal pada topik dalam TCS SE ini.
Ross Snider

2
Karena hasilnya mungkin daftar, haruskah ini CW?
Suresh Venkat

5
Saya pikir ini adalah pertanyaan yang bagus. Ada sangat sedikit yang diketahui tentang kompleksitas komputasi dari masalah topologi, dan saya tidak percaya itu telah dikumpulkan di satu tempat (jika ada, satu jawaban akan cukup, dan pertanyaannya seharusnya bukan CW).
Peter Shor

3
Sudahkah Anda mempertimbangkan "Topologi Algoritma dan Klasifikasi 3-Manifold" oleh S.Matveev? ( springer.com/mathematics/geometry/book/978-3-540-45898-2 Daftar isi tersedia untuk diunduh gratis)
Artem Pelenitsyn

Jawaban:


27

Topologi komputasi mencakup badan penelitian yang sangat besar . Ringkasan lengkap dari setiap hasil kompleksitas tidak akan mungkin. Tetapi untuk memberi Anda sedikit rasa, izinkan saya memperluas contoh Anda.

Pada tahun 1911, Max Dehn mengajukan masalah kata untuk kelompok yang disajikan secara halus : Diberikan string pada alfabet generator, apakah itu mewakili elemen identitas? Satu tahun kemudian, Dehn mendeskripsikan suatu algoritma untuk masalah kata dalam kelompok dasar dari permukaan yang dapat diorientasikan; ekuivalen, Dehn menjelaskan bagaimana memutuskan apakah suatu siklus tertentu pada permukaan yang berorientasi dapat dikontrak. Diimplementasikan dengan benar, algoritma Dehn berjalan dalam waktu . Dalam makalah 1912 yang sama, Dehn berpendapat bahwa "Memecahkan kata masalah untuk semua kelompok mungkin tidak mungkin seperti menyelesaikan semua masalah matematika."O(n)

Pada tahun 1950, Turing membuktikan bahwa kata problem dalam semigroup yang disajikan dengan halus tidak dapat diputuskan, dengan pengurangan dari masalah penghentian (kejutan, kejutan).

Berdasarkan hasil Turing, Markov membuktikan pada tahun 1951 bahwa setiap properti nontrivial dari semi-grup yang disajikan secara halus tidak dapat diputuskan. Properti grup adalah non-trivial jika beberapa grup memiliki properti dan beberapa grup lainnya tidak. Ilmuwan komputer teoretis mengetahui hasil yang serupa tentang fungsi parsial sebagai "Teorema Padi".

Pada tahun 1952, Novikov membuktikan bahwa masalah kata dalam finitely disajikan kelompok adalah diputuskan, sehingga membuktikan bahwa intuisi Dehn adalah benar. Hasil yang sama dibuktikan secara independen oleh Boone pada tahun 1954 dan Britton pada tahun 1958.

Pada tahun 1955, Adyan membuktikan bahwa setiap properti nontrivial dari kelompok- kelompok yang disajikan secara halus tidak dapat diputuskan. Hasil yang sama terbukti secara mandiri oleh Rabin pada tahun 1956. (Ya, itu Rabin.)

Akhirnya, pada tahun 1958, Markov menggambarkan algoritma untuk membangun kompleks sel 2-dimensi dan manifold 4-dimensi dengan kelompok fundamental yang diinginkan, mengingat presentasi kelompok sebagai input. Hasil ini segera menyiratkan bahwa sejumlah besar masalah topologi tidak dapat diputuskan, termasuk yang berikut:

  • Apakah siklus tertentu dalam kompleks 2 dimensi tertentu dapat dikontrak? (Ini adalah masalah kata.)
  • Apakah 2-kompleks yang diberikan hanya terhubung? ("Apakah grup ini sepele?")
  • Apakah siklus yang diberikan dalam 4-manifold dapat dikontrak?
  • Apakah kontrak 4 berjenis bisa diberikan?
  • Apakah 4-manifold homeomorfik tertentu untuk 4-manifold tertentu (dibangun oleh Markov)?
  • Apakah 5-manifold homeomorfik tertentu untuk 5-bola (atau 5-manifold tetap lainnya yang Anda pilih)?
  • Apakah 6 kompleks diberikan banyak ragam?

Akibat wajar favorit saya dari hasil ini lebih baru dan lebih halus: Tidak dapat dipungkiri apakah kelompok yang disajikan dengan halus adalah kelompok fundamental berjenis 3-manifold. Bukti Perelman baru-baru ini tentang dugaan geometriasi Thurston menyiratkan adanya suatu algoritma untuk menentukan apakah 3-manifold yang diberikan memiliki kelompok fundamental yang sepele. (Seperti yang ditunjukkan oleh @SamNead, hasil Rubenstein dan Casson menyiratkan suatu algoritma yang berjalan dalam waktu eksponensial.) Jika grup diberikan bukan grup manifold 3, maka tidak dapat sepele, karena adalah sepele. Jadi, jika Anda dapat memutuskan apakah adalah kelompok berjenis 3, Anda dapat memutuskan apakah itu sepele, yang tidak mungkin.G π 1 ( S 3 ) G GGGπ1(S3)GG


Jeff. Terima kasih. Ini adalah hal yang sangat bagus, dan sangat memperluas contoh kedua.
Ross Snider

Saya telah menambahkan hadiah untuk pertanyaan bukan karena jawaban ini tidak luar biasa, tetapi karena saya ingin mendorong lebih banyak jawaban (terutama lebih seperti contoh pertama saya). Terima kasih lagi.
Ross Snider

Argumen Anda untuk menjadi ragu-ragu menjadi kelompok 3-ragam tampaknya agak goyah bagi saya. Ini mencegah Anda membuat 3-manifold yang G-nya adalah grup, tetapi mungkin ada beberapa cara untuk menjawab ya atau tidak tanpa membuat manifold? Maka Perelman tidak akan punya apa-apa untuk melanjutkan.
David Eppstein

Berikut penjelasan yang lebih cermat oleh Henry Wilton: ldtopology.wordpress.com/2010/01/26/…
Jeffε

1
@ Jeff - Saya tidak yakin mengapa Anda mengabaikan komentar saya sebelumnya. Ada adalah sebuah algoritma exp-waktu untuk memutuskan apakah kelompok fundamental tiga berjenis (ditutup terhubung) adalah sepele. Mengatakan "TIDAK ada batasan yang diketahui tentang kompleksitas algoritma ini" salah ... bukan? Apa yang saya lewatkan? Bisakah saya meminta Anda menjelaskan?
Sam Nead

Dengan menggunakan situs kami, Anda mengakui telah membaca dan memahami Kebijakan Cookie dan Kebijakan Privasi kami.
Licensed under cc by-sa 3.0 with attribution required.