Deep Neural Network - Backpropogation dengan ReLU


17

Saya mengalami beberapa kesulitan dalam menurunkan propagasi kembali dengan ReLU, dan saya melakukan beberapa pekerjaan, tetapi saya tidak yakin apakah saya berada di jalur yang benar.

Fungsi Biaya: 12(yy^)2di manayadalah nilai riil, dan y adalah nilai prediksi. Juga asumsikanx> 0 selalu.y^x


1 Layer ReLU, di mana bobot pada layer 1 adalah w1

masukkan deskripsi gambar di sini

dCdw1=dCdRdRdw1

dCw1=(yReLU(w1x))(x)


2 Layer ReLU, di mana bobot pada layer 1 adalah w2 , dan layer 2 adalah w1 Dan saya ingin memperbarui layer 1 w2

masukkan deskripsi gambar di sini

dCdw2=dCdRdRdw2

dCw2=(yReLU(w1ReLU(w2x))(w1x)

Karena ReLU(w1ReLU(w2x))=w1w2x


3 Layer ReLU, di mana bobot pada layer 1 adalah , layer 2 w 2 dan layer 3 w 1w3w2w1

masukkan deskripsi gambar di sini

dCdw3=dCdRdRdw3

dCw3=(yReLU(w1ReLU(w2(ReLU(w3)))(w1w2x)

Karena ReLU(w1ReLU(w2(ReLU(w3))=w1w2w3x

Karena aturan rantai hanya bertahan dengan 2 turunan, dibandingkan dengan sigmoid, yang bisa sepanjang jumlah lapisan.n


Katakanlah saya ingin memperbarui ketiga bobot layer, di mana adalah layer ke-3, w 2 adalah layer ke-2, w 1 adalah layer ke-3w1w2w1

dCw1=(yReLU(w1x))(x)

dCw2=(yReLU(w1ReLU(w2x))(w1x)

dCw3=(yReLU(w1ReLU(w2(ReLU(w3)))(w1w2x)

Jika derivasi ini benar, bagaimana hal ini mencegah menghilang? Dibandingkan dengan sigmoid, di mana kita memiliki banyak kalikan dengan 0,25 dalam persamaan, sedangkan ReLU tidak memiliki multiplikasi nilai konstan. Jika ada ribuan lapisan, akan ada banyak perkalian karena bobot, maka bukankah ini menyebabkan gradien menghilang atau meledak?


@NeilSlater Terima kasih atas balasan Anda! Bisakah Anda menguraikan, saya tidak yakin apa yang Anda maksud?
user1157751

Ah, saya pikir saya tahu apa yang Anda maksudkan. Nah, alasan saya mengemukakan pertanyaan ini adalah saya yakin turunannya benar? Saya mencari-cari dan tidak menemukan contoh ReLU sepenuhnya berasal dari awal?
user1157751

Jawaban:


15

Definisi kerja fungsi ReLU dan turunannya:

ReLU(x)={0,if x<0,x,otherwise.

ddxReLU(x)={0,if x<0,1,otherwise.

x=0


Jaringan yang disederhanakan

Dengan definisi tersebut, mari kita lihat contoh jaringan Anda.

C=12(yy^)2. You have defined R as the output of the artificial neuron, but you have not defined an input value. I'll add that for completeness - call it z, add some indexing by layer, and I prefer lower-case for the vectors and upper case for matrices, so r(1) output of the first layer, z(1) for its input and W(0) for the weight connecting the neuron to its input x (in a larger network, that might connect to a deeper r value instead). I have also adjusted the index number for the weight matrix - why that is will become clearer for the larger network. NB I am ignoring having more than neuron in each layer for now.

Looking at your simple 1 layer, 1 neuron network, the feed-forward equations are:

z(1)=W(0)x

y^=r(1)=ReLU(z(1))

The derivative of the cost function w.r.t. an example estimate is:

Cy^=Cr(1)=r(1)12(yr(1))2=12r(1)(y22yr(1)+(r(1))2)=r(1)y

Using the chain rule for back propagation to the pre-transform (z) value:

Cz(1)=Cr(1)r(1)z(1)=(r(1)y)Step(z(1))=(ReLU(z(1))y)Step(z(1))

This Cz(1) is an interim stage and critical part of backprop linking steps together. Derivations often skip this part because clever combinations of cost function and output layer mean that it is simplified. Here it is not.

To get the gradient with respect to the weight W(0), then it is another iteration of the chain rule:

CW(0)=Cz(1)z(1)W(0)=(ReLU(z(1))y)Step(z(1))x=(ReLU(W(0)x)y)Step(W(0)x)x

. . . because z(1)=W(0)x therefore z(1)W(0)=x

That is the full solution for your simplest network.

However, in a layered network, you also need to carry the same logic down to the next layer. Also, you typically have more than one neuron in a layer.


More general ReLU network

If we add in more generic terms, then we can work with two arbitrary layers. Call them Layer (k) indexed by i, and Layer (k+1) indexed by j. The weights are now a matrix. So our feed-forward equations look like this:

zj(k+1)=iWij(k)ri(k)

rj(k+1)=ReLU(zj(k+1))

In the output layer, then the initial gradient w.r.t. rjoutput is still rjoutputyj. However, ignore that for now, and look at the generic way to back propagate, assuming we have already found Crj(k+1) - just note that this is ultimately where we get the output cost function gradients from. Then there are 3 equations we can write out following the chain rule:

First we need to get to the neuron input before applying ReLU:

  1. Czj(k+1)=Crj(k+1)rj(k+1)zj(k+1)=Crj(k+1)Step(zj(k+1))

We also need to propagate the gradient to previous layers, which involves summing up all connected influences to each neuron:

  1. Cri(k)=jCzj(k+1)zj(k+1)ri(k)=jCzj(k+1)Wij(k)

And we need to connect this to the weights matrix in order to make adjustments later:

  1. CWij(k)=Czj(k+1)zj(k+1)Wij(k)=Czj(k+1)ri(k)

You can resolve these further (by substituting in previous values), or combine them (often steps 1 and 2 are combined to relate pre-transform gradients layer by layer). However the above is the most general form. You can also substitute the Step(zj(k+1)) in equation 1 for whatever the derivative function is of your current activation function - this is the only place where it affects the calculations.


Back to your questions:

If this derivation is correct, how does this prevent vanishing?

Your derivation was not correct. However, that does not completely address your concerns.

The difference between using sigmoid versus ReLU is just in the step function compared to e.g. sigmoid's y(1y), applied once per layer. As you can see from the generic layer-by-layer equations above, the gradient of the transfer function appears in one place only. The sigmoid's best case derivative adds a factor of 0.25 (when x=0,y=0.5), and it gets worse than that and saturates quickly to near zero derivative away from x=0. The ReLU's gradient is either 0 or 1, and in a healthy network will be 1 often enough to have less gradient loss during backpropagation. This is not guaranteed, but experiments show that ReLU has good performance in deep networks.

If there's thousands of layers, there would be a lot of multiplication due to weights, then wouldn't this cause vanishing or exploding gradient?

Yes this can have an impact too. This can be a problem regardless of transfer function choice. In some combinations, ReLU may help keep exploding gradients under control too, because it does not saturate (so large weight norms will tend to be poor direct solutions and an optimiser is unlikely to move towards them). However, this is not guaranteed.


Was a chain rule performed on dCdy^?
user1157751

@user1157751: No, Cy^=Cr(1) because y^=r(1). The cost function C is simple enough that you can take its derivative immediately. The only thing I haven't shown there is the expansion of the square - would you like me to add it?
Neil Slater

But C is 12(yy^)2, don't we need to perform chain rule so that we can perform the derivative on y^? dCdy^=dCdUdUdy^, where U=yy^. Apologize for asking really simple questions, my maths ability is probably causing trouble for you : (
user1157751

If you can make things simpler by expanding. Then please do expand the square.
user1157751

@user1157751: Yes you could use the chain rule in that way, and it would give the same answer as I show. I just expanded the square - I'll show it.
Neil Slater
Dengan menggunakan situs kami, Anda mengakui telah membaca dan memahami Kebijakan Cookie dan Kebijakan Privasi kami.
Licensed under cc by-sa 3.0 with attribution required.