Ini lebih seperti pertanyaan NLP umum. Apa input yang tepat untuk melatih embedding kata yaitu Word2Vec? Haruskah semua kalimat yang dimiliki artikel menjadi dokumen terpisah dalam korpus? Atau haruskah setiap artikel menjadi dokumen dalam kata corpus? Ini hanya contoh menggunakan python dan gensim.
Corpus dibagi dengan kalimat:
SentenceCorpus = [["first", "sentence", "of", "the", "first", "article."],
["second", "sentence", "of", "the", "first", "article."],
["first", "sentence", "of", "the", "second", "article."],
["second", "sentence", "of", "the", "second", "article."]]
Corpus dibagi berdasarkan artikel:
ArticleCorpus = [["first", "sentence", "of", "the", "first", "article.",
"second", "sentence", "of", "the", "first", "article."],
["first", "sentence", "of", "the", "second", "article.",
"second", "sentence", "of", "the", "second", "article."]]
Pelatihan Word2Vec dengan Python:
from gensim.models import Word2Vec
wikiWord2Vec = Word2Vec(ArticleCorpus)