Setelah beberapa percobaan, saya menemukan bahwa adalah mungkin untuk membangun fungsi peringkat berdasarkan MapReduce, dengan asumsi set hasil dapat sesuai dengan ukuran dokumen maks.
Sebagai contoh, misalkan saya memiliki koleksi seperti ini:
{ player: "joe", points: 1000, foo: 10, bar: 20, bang: "some text" }
{ player: "susan", points: 2000, foo: 10, bar: 20, bang: "some text" }
{ player: "joe", points: 1500, foo: 10, bar: 20, bang: "some text" }
{ player: "ben", points: 500, foo: 10, bar: 20, bang: "some text" }
...
Saya dapat melakukan yang setara dengan DENSE_RANK seperti:
var m = function() {
++g_counter;
if ((this.player == "joe") && (g_scores.length != g_fake_limit)) {
g_scores.push({
player: this.player,
points: this.points,
foo: this.foo,
bar: this.bar,
bang: this.bang,
rank: g_counter
});
}
if (g_counter == g_final)
{
emit(this._id, g_counter);
}
}}
var r = function (k, v) { }
var f = function(k, v) { return g_scores; }
var test_mapreduce = function (limit) {
var total_scores = db.scores.count();
return db.scores.mapReduce(m, r, {
out: { inline: 1 },
sort: { points: -1 },
finalize: f,
limit: total_scores,
verbose: true,
scope: {
g_counter: 0,
g_final: total_scores,
g_fake_limit: limit,
g_scores:[]
}
}).results[0].value;
}
Sebagai perbandingan, berikut adalah pendekatan "naif" yang disebutkan di tempat lain:
var test_naive = function(limit) {
var cursor = db.scores.find({player: "joe"}).limit(limit).sort({points: -1});
var scores = [];
cursor.forEach(function(score) {
score.rank = db.scores.count({points: {"$gt": score.points}}) + 1;
scores.push(score);
});
return scores;
}
Saya membandingkan kedua pendekatan pada satu contoh MongoDB 1.8.2 menggunakan kode berikut:
var rand = function(max) {
return Math.floor(Math.random() * max);
}
var create_score = function() {
var names = ["joe", "ben", "susan", "kevin", "lucy"]
return { player: names[rand(names.length)], points: rand(1000000), foo: 10, bar: 20, bang: "some kind of example text"};
}
var init_collection = function(total_records) {
db.scores.drop();
for (var i = 0; i != total_records; ++i) {
db.scores.insert(create_score());
}
db.scores.createIndex({points: -1})
}
var benchmark = function(test, count, limit) {
init_collection(count);
var durations = [];
for (var i = 0; i != 5; ++i) {
var start = new Date;
result = test(limit)
var stop = new Date;
durations.push(stop - start);
}
db.scores.drop();
return durations;
}
Sementara MapReduce lebih cepat dari yang saya harapkan, pendekatan naif meledakkannya dari air untuk ukuran pengumpulan yang lebih besar, terutama sekali cache dihangatkan:
> benchmark(test_naive, 1000, 50);
[ 22, 16, 17, 16, 17 ]
> benchmark(test_mapreduce, 1000, 50);
[ 16, 15, 14, 11, 14 ]
>
> benchmark(test_naive, 10000, 50);
[ 56, 16, 17, 16, 17 ]
> benchmark(test_mapreduce, 10000, 50);
[ 154, 109, 116, 109, 109 ]
>
> benchmark(test_naive, 100000, 50);
[ 492, 15, 18, 17, 16 ]
> benchmark(test_mapreduce, 100000, 50);
[ 1595, 1071, 1099, 1108, 1070 ]
>
> benchmark(test_naive, 1000000, 50);
[ 6600, 16, 15, 16, 24 ]
> benchmark(test_mapreduce, 1000000, 50);
[ 17405, 10725, 10768, 10779, 11113 ]
Jadi untuk saat ini, sepertinya pendekatan naif adalah jalan yang harus ditempuh, meskipun saya akan tertarik untuk melihat apakah ceritanya berubah akhir tahun ini karena tim MongoDB terus meningkatkan kinerja MapReduce.