Anda dapat menggunakan rasterio untuk mengekstrak nilai raster dalam poligon seperti pada GIS SE: GDAL python memotong gambar geotiff dengan file geojson
Di sini saya menggunakan file raster satu band dan GeoPandas untuk shapefile (bukan Fiona)
import rasterio
from rasterio.mask import mask
import geopandas as gpd
shapefile = gpd.read_file("extraction.shp")
# extract the geometry in GeoJSON format
geoms = shapefile.geometry.values # list of shapely geometries
geometry = geoms[0] # shapely geometry
# transform to GeJSON format
from shapely.geometry import mapping
geoms = [mapping(geoms[0])]
# extract the raster values values within the polygon
with rasterio.open("raster.tif") as src:
out_image, out_transform = mask(src, geoms, crop=True)
Hasil out_image adalah array bertopeng Numpy
# no data values of the original raster
no_data=src.nodata
print no_data
-9999.0
# extract the values of the masked array
data = out_image.data[0]
# extract the row, columns of the valid values
import numpy as np
row, col = np.where(data != no_data)
elev = np.extract(data != no_data, data)
Sekarang saya menggunakan Bagaimana cara mendapatkan koordinat sel dalam geotif? atau Python affine mentransformasikan untuk mengubah antara pixel dan koordinat yang diproyeksikan dengan out_transform
sebagai affine transform untuk data subset
from rasterio import Affine # or from affine import Affine
T1 = out_transform * Affine.translation(0.5, 0.5) # reference the pixel centre
rc2xy = lambda r, c: (c, r) * T1
Pembuatan GeoDataFrame baru yang dihasilkan dengan nilai col, row, dan elevation
d = gpd.GeoDataFrame({'col':col,'row':row,'elev':elev})
# coordinate transformation
d['x'] = d.apply(lambda row: rc2xy(row.row,row.col)[0], axis=1)
d['y'] = d.apply(lambda row: rc2xy(row.row,row.col)[1], axis=1)
# geometry
from shapely.geometry import Point
d['geometry'] =d.apply(lambda row: Point(row['x'], row['y']), axis=1)
# first 2 points
d.head(2)
row col elev x y geometry
0 1 2 201.7! 203590.58 89773.50 POINT (203590.58 89773.50)
1 1 3 200.17 203625.97 89773.50 POINT (203625.97 89773.50)
# save to a shapefile
d.to_file('result.shp', driver='ESRI Shapefile')