Contoh Tissot elips untuk Proyeksi Equirectangular?


9

Saya mencoba menghitung distorsi proyeksi equirectangular via Tissot indicatrices. Saya telah mencoba mengikuti petunjuk pada posting ini (antara lain) tetapi itu di luar pemahaman saya sebagai seorang amatir.

Jadi, saya bertanya-tanya apakah seseorang akan berbaik hati menghitung satu ellipse Tissot untuk contoh equirectangular lat / long (mana yang menjadi favorit Anda dan terdistorsi pada proyeksi equirectangular). Saya tidak mengerti apa variabel itu dan dari mana mereka berasal, jadi melihat persamaan dalam tindakan akan sangat berguna.

Saya mencoba memahami persamaan ini sehingga saya bisa menancapkannya ke program pemetaan saya coding. Saya mengajukan banyak pertanyaan umum di utas ini , tetapi saya pikir contoh spesifik akan membantu saya mencari tahu sisanya.

Terima kasih banyak, seperti biasa.

NCashew

Jawaban:


8

Sebagai catatan, berikut ini adalah implementasi lengkap, yang dikomentari dari perhitungan Tissot indicatrix (dan terkait) dalam R, dengan contoh yang dikerjakan. Sumber persamaan adalah Proyeksi Peta John Snyder - A Working Manual.

tissot indicatrix

tissot <- function(lambda, phi, prj=function(z) z+0, asDegrees=TRUE, A = 6378137, f.inv=298.257223563, ...) {
  #
  # Compute properties of scale distortion and Tissot's indicatrix at location `x` = c(`lambda`, `phi`)
  # using `prj` as the projection.  `A` is the ellipsoidal semi-major axis (in meters) and `f.inv` is
  # the inverse flattening.  The projection must return a vector (x, y) when given a vector (lambda, phi).
  # (Not vectorized.)  Optional arguments `...` are passed to `prj`.
  #
  # Source: Snyder pp 20-26 (WGS 84 defaults for the ellipsoidal parameters).
  # All input and output angles are in degrees.
  #
  to.degrees <- function(x) x * 180 / pi
  to.radians <- function(x) x * pi / 180
  clamp <- function(x) min(max(x, -1), 1)                             # Avoids invalid args to asin
  norm <- function(x) sqrt(sum(x*x))
  #
  # Precomputation.
  #
  if (f.inv==0) {                                                     # Use f.inv==0 to indicate a sphere
    e2 <- 0 
  } else {
    e2 <- (2 - 1/f.inv) / f.inv                                       # Squared eccentricity
  }
  if (asDegrees) phi.r <- to.radians(phi) else phi.r <- phi
  cos.phi <- cos(phi.r)                                               # Convenience term
  e2.sinphi <- 1 - e2 * sin(phi.r)^2                                  # Convenience term
  e2.sinphi2 <- sqrt(e2.sinphi)                                       # Convenience term
  if (asDegrees) units <- 180 / pi else units <- 1                    # Angle measurement units per radian
  #
  # Lengths (the metric).
  #
  radius.meridian <- A * (1 - e2) / e2.sinphi2^3                      # (4-18)
  length.meridian <- radius.meridian                                  # (4-19)
  radius.normal <- A / e2.sinphi2                                     # (4-20)
  length.normal <- radius.normal * cos.phi                            # (4-21)
  #
  # The projection and its first derivatives, normalized to unit lengths.
  #
  x <- c(lambda, phi)
  d <- numericDeriv(quote(prj(x, ...)), theta="x")
  z <- d[1:2]                                                         # Projected coordinates
  names(z) <- c("x", "y")
  g <- attr(d, "gradient")                                            # First derivative (matrix)
  g <- g %*% diag(units / c(length.normal, length.meridian))          # Unit derivatives
  dimnames(g) <- list(c("x", "y"), c("lambda", "phi"))
  g.det <- det(g)                                                     # Equivalent to (4-15)
  #
  # Computation.
  #
  h <- norm(g[, "phi"])                                               # (4-27)
  k <- norm(g[, "lambda"])                                            # (4-28)
  a.p <- sqrt(max(0, h^2 + k^2 + 2 * g.det))                          # (4-12) (intermediate)
  b.p <- sqrt(max(0, h^2 + k^2 - 2 * g.det))                          # (4-13) (intermediate)
  a <- (a.p + b.p)/2                                                  # (4-12a)
  b <- (a.p - b.p)/2                                                  # (4-13a)
  omega <- 2 * asin(clamp(b.p / a.p))                                 # (4-1a)
  theta.p <- asin(clamp(g.det / (h * k)))                             # (4-14)
  conv <- (atan2(g["y", "phi"], g["x","phi"]) + pi / 2) %% (2 * pi) - pi # Middle of p. 21
  #
  # The indicatrix itself.
  # `svd` essentially redoes the preceding computation of `h`, `k`, and `theta.p`.
  #
  m <- svd(g)
  axes <- zapsmall(diag(m$d) %*% apply(m$v, 1, function(x) x / norm(x)))
  dimnames(axes) <- list(c("major", "minor"), NULL)

  return(list(location=c(lambda, phi), projected=z, 
           meridian_radius=radius.meridian, meridian_length=length.meridian,
           normal_radius=radius.normal, normal_length=length.normal,
           scale.meridian=h, scale.parallel=k, scale.area=g.det, max.scale=a, min.scale=b, 
           to.degrees(zapsmall(c(angle_deformation=omega, convergence=conv, intersection_angle=theta.p))),
           axes=axes, derivatives=g))
}
indicatrix <- function(x, scale=1, ...) {
  # Reprocesses the output of `tissot` into convenient geometrical data.
  o <- x$projected
  base <- ellipse(o, matrix(c(1,0,0,1), 2), scale=scale, ...)             # A reference circle
  outline <- ellipse(o, x$axes, scale=scale, ...)
  axis.major <- rbind(o + scale * x$axes[1, ], o - scale * x$axes[1, ])
  axis.minor <- rbind(o + scale * x$axes[2, ], o - scale * x$axes[2, ])
  d.lambda <- rbind(o + scale * x$derivatives[, "lambda"], o - scale * x$derivatives[, "lambda"])
  d.phi <- rbind(o + scale * x$derivatives[, "phi"], o - scale * x$derivatives[, "phi"])
  return(list(center=x$projected, base=base, outline=outline, 
              axis.major=axis.major, axis.minor=axis.minor,
              d.lambda=d.lambda, d.phi=d.phi))
}
ellipse <- function(center, axes, scale=1, n=36, from=0, to=2*pi) {
  # Vector representation of an ellipse at `center` with axes in the *rows* of `axes`.
  # Returns an `n` by 2 array of points, one per row.
  theta <- seq(from=from, to=to, length.out=n)
  t((scale * t(axes))  %*% rbind(cos(theta), sin(theta)) + center)
}
#
# Example: analyzing a GDAL reprojection.
#
library(rgdal)

prj <- function(z, proj.in, proj.out) {
  z.pt <- SpatialPoints(coords=matrix(z, ncol=2), proj4string=proj.in)
  w.pt <- spTransform(z.pt, CRS=proj.out)
  return(w.pt@coords[1, ])
}
r <- tissot(130, 54, prj,                # Longitude, latitude, and reprojection function
       proj.in=CRS("+init=epsg:4267"),   # NAD 27
       proj.out=CRS("+init=esri:54030")) # World Robinson projection

i <- indicatrix(r, scale=10^4, n=71)
plot(i$outline, type="n", asp=1, xlab="Easting", ylab="Northing")
polygon(i$base, col=rgb(0, 0, 0, .025), border="Gray")
lines(i$d.lambda, lwd=2, col="Gray", lty=2)
lines(i$d.phi, lwd=2, col=rgb(.25, .7, .25), lty=2)
lines(i$axis.major, lwd=2, col=rgb(.25, .25, .7))
lines(i$axis.minor, lwd=2, col=rgb(.7, .25, .25))
lines(i$outline, asp=1, lwd=2)
Dengan menggunakan situs kami, Anda mengakui telah membaca dan memahami Kebijakan Cookie dan Kebijakan Privasi kami.
Licensed under cc by-sa 3.0 with attribution required.