Untuk beberapa waktu sekarang saya telah memikirkan kendala waktu dekat, jadi ini adalah kesempatan yang sempurna untuk meluncurkan konsep.
Ide dasarnya adalah bahwa jika Anda tidak dapat melakukan waktu kompilasi cek, Anda harus melakukannya sedini mungkin, yang pada dasarnya adalah saat aplikasi dimulai. Jika semua cek baik-baik saja, aplikasi akan berjalan; jika cek gagal, aplikasi akan gagal secara instan.
Tingkah laku
Hasil terbaik yang mungkin adalah bahwa program kami tidak dapat dikompilasi jika kendala tidak terpenuhi. Sayangnya itu tidak mungkin dalam implementasi C # saat ini.
Hal terbaik berikutnya adalah bahwa program macet saat dimulai.
Opsi terakhir adalah bahwa program akan macet saat kode dipukul. Ini adalah perilaku default .NET. Bagi saya, ini benar-benar tidak dapat diterima.
Prasyarat
Kita perlu memiliki mekanisme kendala, jadi karena tidak ada yang lebih baik ... mari kita gunakan atribut. Atribut akan hadir di atas batasan umum untuk memeriksa apakah itu cocok dengan kondisi kita. Jika tidak, kami memberikan kesalahan yang buruk.
Ini memungkinkan kami melakukan hal-hal seperti ini dalam kode kami:
public class Clas<[IsInterface] T> where T : class
(Saya telah menyimpannya di where T:class
sini, karena saya selalu lebih suka pemeriksaan waktu kompilasi daripada pemeriksaan waktu berjalan)
Jadi, itu hanya menyisakan 1 masalah bagi kami, yaitu memeriksa apakah semua tipe yang kami gunakan cocok dengan batasan tersebut. Seberapa sulitkah itu?
Mari kita hancurkan
Tipe generik selalu baik pada kelas (/ struct / antarmuka) atau pada suatu metode.
Memicu kendala mengharuskan Anda melakukan salah satu dari hal-hal berikut:
- Waktu kompilasi, saat menggunakan tipe dalam tipe (pewarisan, batasan generik, anggota kelas)
- Waktu kompilasi, saat menggunakan tipe dalam tubuh metode
- Run-time, ketika menggunakan refleksi untuk membangun sesuatu berdasarkan kelas dasar generik.
- Run-time, ketika menggunakan refleksi untuk membangun sesuatu berdasarkan RTTI.
Pada titik ini, saya ingin menyatakan bahwa Anda harus selalu menghindari melakukan (4) dalam program IMO. Apapun, pemeriksaan ini tidak akan mendukungnya, karena itu secara efektif berarti menyelesaikan masalah penghentian.
Kasus 1: menggunakan tipe
Contoh:
public class TestClass : SomeClass<IMyInterface> { ... }
Contoh 2:
public class TestClass
{
SomeClass<IMyInterface> myMember; // or a property, method, etc.
}
Pada dasarnya ini melibatkan pemindaian semua jenis, warisan, anggota, parameter, dll, dll, dll. Jika suatu jenis adalah tipe generik dan memiliki batasan, kami memeriksa batasannya; jika array, kami memeriksa jenis elemen.
Pada titik ini saya harus menambahkan bahwa ini akan mematahkan fakta bahwa secara default .NET memuat jenis 'malas'. Dengan memindai semua jenis, kami memaksa runtime .NET untuk memuat semuanya. Untuk sebagian besar program ini seharusnya tidak menjadi masalah; tetap saja, jika Anda menggunakan inisialisasi statis dalam kode Anda, Anda mungkin mengalami masalah dengan pendekatan ini ... Yang mengatakan, saya tidak akan menyarankan siapa pun untuk melakukan ini anyways (kecuali untuk hal-hal seperti ini :-), jadi itu seharusnya tidak memberikan Anda banyak masalah.
Kasus 2: menggunakan tipe dalam suatu metode
Contoh:
void Test() {
new SomeClass<ISomeInterface>();
}
Untuk memeriksa ini kita hanya memiliki 1 opsi: mendekompilasi kelas, periksa semua token anggota yang digunakan dan jika salah satunya adalah tipe generik - periksa argumen.
Kasus 3: Refleksi, konstruksi generik runtime
Contoh:
typeof(CtorTest<>).MakeGenericType(typeof(IMyInterface))
Saya kira secara teori dimungkinkan untuk memeriksa ini dengan trik yang sama seperti kasus (2), tetapi pelaksanaannya jauh lebih sulit (Anda perlu memeriksa jika MakeGenericType
dipanggil dalam beberapa jalur kode). Saya tidak akan membahas detail di sini ...
Kasus 4: Refleksi, runtime RTTI
Contoh:
Type t = Type.GetType("CtorTest`1[IMyInterface]");
Ini adalah skenario terburuk dan seperti yang saya jelaskan sebelumnya umumnya ide yang buruk IMHO. Either way, tidak ada cara praktis untuk mencari tahu ini menggunakan cek.
Menguji banyak
Membuat program yang menguji kasus (1) dan (2) akan menghasilkan sesuatu seperti ini:
[AttributeUsage(AttributeTargets.GenericParameter)]
public class IsInterface : ConstraintAttribute
{
public override bool Check(Type genericType)
{
return genericType.IsInterface;
}
public override string ToString()
{
return "Generic type is not an interface";
}
}
public abstract class ConstraintAttribute : Attribute
{
public ConstraintAttribute() {}
public abstract bool Check(Type generic);
}
internal class BigEndianByteReader
{
public BigEndianByteReader(byte[] data)
{
this.data = data;
this.position = 0;
}
private byte[] data;
private int position;
public int Position
{
get { return position; }
}
public bool Eof
{
get { return position >= data.Length; }
}
public sbyte ReadSByte()
{
return (sbyte)data[position++];
}
public byte ReadByte()
{
return (byte)data[position++];
}
public int ReadInt16()
{
return ((data[position++] | (data[position++] << 8)));
}
public ushort ReadUInt16()
{
return (ushort)((data[position++] | (data[position++] << 8)));
}
public int ReadInt32()
{
return (((data[position++] | (data[position++] << 8)) | (data[position++] << 0x10)) | (data[position++] << 0x18));
}
public ulong ReadInt64()
{
return (ulong)(((data[position++] | (data[position++] << 8)) | (data[position++] << 0x10)) | (data[position++] << 0x18) |
(data[position++] << 0x20) | (data[position++] << 0x28) | (data[position++] << 0x30) | (data[position++] << 0x38));
}
public double ReadDouble()
{
var result = BitConverter.ToDouble(data, position);
position += 8;
return result;
}
public float ReadSingle()
{
var result = BitConverter.ToSingle(data, position);
position += 4;
return result;
}
}
internal class ILDecompiler
{
static ILDecompiler()
{
// Initialize our cheat tables
singleByteOpcodes = new OpCode[0x100];
multiByteOpcodes = new OpCode[0x100];
FieldInfo[] infoArray1 = typeof(OpCodes).GetFields();
for (int num1 = 0; num1 < infoArray1.Length; num1++)
{
FieldInfo info1 = infoArray1[num1];
if (info1.FieldType == typeof(OpCode))
{
OpCode code1 = (OpCode)info1.GetValue(null);
ushort num2 = (ushort)code1.Value;
if (num2 < 0x100)
{
singleByteOpcodes[(int)num2] = code1;
}
else
{
if ((num2 & 0xff00) != 0xfe00)
{
throw new Exception("Invalid opcode: " + num2.ToString());
}
multiByteOpcodes[num2 & 0xff] = code1;
}
}
}
}
private ILDecompiler() { }
private static OpCode[] singleByteOpcodes;
private static OpCode[] multiByteOpcodes;
public static IEnumerable<ILInstruction> Decompile(MethodBase mi, byte[] ildata)
{
Module module = mi.Module;
BigEndianByteReader reader = new BigEndianByteReader(ildata);
while (!reader.Eof)
{
OpCode code = OpCodes.Nop;
int offset = reader.Position;
ushort b = reader.ReadByte();
if (b != 0xfe)
{
code = singleByteOpcodes[b];
}
else
{
b = reader.ReadByte();
code = multiByteOpcodes[b];
b |= (ushort)(0xfe00);
}
object operand = null;
switch (code.OperandType)
{
case OperandType.InlineBrTarget:
operand = reader.ReadInt32() + reader.Position;
break;
case OperandType.InlineField:
if (mi is ConstructorInfo)
{
operand = module.ResolveField(reader.ReadInt32(), mi.DeclaringType.GetGenericArguments(), Type.EmptyTypes);
}
else
{
operand = module.ResolveField(reader.ReadInt32(), mi.DeclaringType.GetGenericArguments(), mi.GetGenericArguments());
}
break;
case OperandType.InlineI:
operand = reader.ReadInt32();
break;
case OperandType.InlineI8:
operand = reader.ReadInt64();
break;
case OperandType.InlineMethod:
try
{
if (mi is ConstructorInfo)
{
operand = module.ResolveMember(reader.ReadInt32(), mi.DeclaringType.GetGenericArguments(), Type.EmptyTypes);
}
else
{
operand = module.ResolveMember(reader.ReadInt32(), mi.DeclaringType.GetGenericArguments(), mi.GetGenericArguments());
}
}
catch
{
operand = null;
}
break;
case OperandType.InlineNone:
break;
case OperandType.InlineR:
operand = reader.ReadDouble();
break;
case OperandType.InlineSig:
operand = module.ResolveSignature(reader.ReadInt32());
break;
case OperandType.InlineString:
operand = module.ResolveString(reader.ReadInt32());
break;
case OperandType.InlineSwitch:
int count = reader.ReadInt32();
int[] targetOffsets = new int[count];
for (int i = 0; i < count; ++i)
{
targetOffsets[i] = reader.ReadInt32();
}
int pos = reader.Position;
for (int i = 0; i < count; ++i)
{
targetOffsets[i] += pos;
}
operand = targetOffsets;
break;
case OperandType.InlineTok:
case OperandType.InlineType:
try
{
if (mi is ConstructorInfo)
{
operand = module.ResolveMember(reader.ReadInt32(), mi.DeclaringType.GetGenericArguments(), Type.EmptyTypes);
}
else
{
operand = module.ResolveMember(reader.ReadInt32(), mi.DeclaringType.GetGenericArguments(), mi.GetGenericArguments());
}
}
catch
{
operand = null;
}
break;
case OperandType.InlineVar:
operand = reader.ReadUInt16();
break;
case OperandType.ShortInlineBrTarget:
operand = reader.ReadSByte() + reader.Position;
break;
case OperandType.ShortInlineI:
operand = reader.ReadSByte();
break;
case OperandType.ShortInlineR:
operand = reader.ReadSingle();
break;
case OperandType.ShortInlineVar:
operand = reader.ReadByte();
break;
default:
throw new Exception("Unknown instruction operand; cannot continue. Operand type: " + code.OperandType);
}
yield return new ILInstruction(offset, code, operand);
}
}
}
public class ILInstruction
{
public ILInstruction(int offset, OpCode code, object operand)
{
this.Offset = offset;
this.Code = code;
this.Operand = operand;
}
public int Offset { get; private set; }
public OpCode Code { get; private set; }
public object Operand { get; private set; }
}
public class IncorrectConstraintException : Exception
{
public IncorrectConstraintException(string msg, params object[] arg) : base(string.Format(msg, arg)) { }
}
public class ConstraintFailedException : Exception
{
public ConstraintFailedException(string msg) : base(msg) { }
public ConstraintFailedException(string msg, params object[] arg) : base(string.Format(msg, arg)) { }
}
public class NCTChecks
{
public NCTChecks(Type startpoint)
: this(startpoint.Assembly)
{ }
public NCTChecks(params Assembly[] ass)
{
foreach (var assembly in ass)
{
assemblies.Add(assembly);
foreach (var type in assembly.GetTypes())
{
EnsureType(type);
}
}
while (typesToCheck.Count > 0)
{
var t = typesToCheck.Pop();
GatherTypesFrom(t);
PerformRuntimeCheck(t);
}
}
private HashSet<Assembly> assemblies = new HashSet<Assembly>();
private Stack<Type> typesToCheck = new Stack<Type>();
private HashSet<Type> typesKnown = new HashSet<Type>();
private void EnsureType(Type t)
{
// Don't check for assembly here; we can pass f.ex. System.Lazy<Our.T<MyClass>>
if (t != null && !t.IsGenericTypeDefinition && typesKnown.Add(t))
{
typesToCheck.Push(t);
if (t.IsGenericType)
{
foreach (var par in t.GetGenericArguments())
{
EnsureType(par);
}
}
if (t.IsArray)
{
EnsureType(t.GetElementType());
}
}
}
private void PerformRuntimeCheck(Type t)
{
if (t.IsGenericType && !t.IsGenericTypeDefinition)
{
// Only check the assemblies we explicitly asked for:
if (this.assemblies.Contains(t.Assembly))
{
// Gather the generics data:
var def = t.GetGenericTypeDefinition();
var par = def.GetGenericArguments();
var args = t.GetGenericArguments();
// Perform checks:
for (int i = 0; i < args.Length; ++i)
{
foreach (var check in par[i].GetCustomAttributes(typeof(ConstraintAttribute), true).Cast<ConstraintAttribute>())
{
if (!check.Check(args[i]))
{
string error = "Runtime type check failed for type " + t.ToString() + ": " + check.ToString();
Debugger.Break();
throw new ConstraintFailedException(error);
}
}
}
}
}
}
// Phase 1: all types that are referenced in some way
private void GatherTypesFrom(Type t)
{
EnsureType(t.BaseType);
foreach (var intf in t.GetInterfaces())
{
EnsureType(intf);
}
foreach (var nested in t.GetNestedTypes())
{
EnsureType(nested);
}
var all = BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Static | BindingFlags.Instance;
foreach (var field in t.GetFields(all))
{
EnsureType(field.FieldType);
}
foreach (var property in t.GetProperties(all))
{
EnsureType(property.PropertyType);
}
foreach (var evt in t.GetEvents(all))
{
EnsureType(evt.EventHandlerType);
}
foreach (var ctor in t.GetConstructors(all))
{
foreach (var par in ctor.GetParameters())
{
EnsureType(par.ParameterType);
}
// Phase 2: all types that are used in a body
GatherTypesFrom(ctor);
}
foreach (var method in t.GetMethods(all))
{
if (method.ReturnType != typeof(void))
{
EnsureType(method.ReturnType);
}
foreach (var par in method.GetParameters())
{
EnsureType(par.ParameterType);
}
// Phase 2: all types that are used in a body
GatherTypesFrom(method);
}
}
private void GatherTypesFrom(MethodBase method)
{
if (this.assemblies.Contains(method.DeclaringType.Assembly)) // only consider methods we've build ourselves
{
MethodBody methodBody = method.GetMethodBody();
if (methodBody != null)
{
// Handle local variables
foreach (var local in methodBody.LocalVariables)
{
EnsureType(local.LocalType);
}
// Handle method body
var il = methodBody.GetILAsByteArray();
if (il != null)
{
foreach (var oper in ILDecompiler.Decompile(method, il))
{
if (oper.Operand is MemberInfo)
{
foreach (var type in HandleMember((MemberInfo)oper.Operand))
{
EnsureType(type);
}
}
}
}
}
}
}
private static IEnumerable<Type> HandleMember(MemberInfo info)
{
// Event, Field, Method, Constructor or Property.
yield return info.DeclaringType;
if (info is EventInfo)
{
yield return ((EventInfo)info).EventHandlerType;
}
else if (info is FieldInfo)
{
yield return ((FieldInfo)info).FieldType;
}
else if (info is PropertyInfo)
{
yield return ((PropertyInfo)info).PropertyType;
}
else if (info is ConstructorInfo)
{
foreach (var par in ((ConstructorInfo)info).GetParameters())
{
yield return par.ParameterType;
}
}
else if (info is MethodInfo)
{
foreach (var par in ((MethodInfo)info).GetParameters())
{
yield return par.ParameterType;
}
}
else if (info is Type)
{
yield return (Type)info;
}
else
{
throw new NotSupportedException("Incorrect unsupported member type: " + info.GetType().Name);
}
}
}
Menggunakan kodenya
Nah, itu bagian yang mudah :-)
// Create something illegal
public class Bar2 : IMyInterface
{
public void Execute()
{
throw new NotImplementedException();
}
}
// Our fancy check
public class Foo<[IsInterface] T>
{
}
class Program
{
static Program()
{
// Perform all runtime checks
new NCTChecks(typeof(Program));
}
static void Main(string[] args)
{
// Normal operation
Console.WriteLine("Foo");
Console.ReadLine();
}
}