Saya menginstal Spark menggunakan panduan AWS EC2 dan saya dapat meluncurkan program dengan baik menggunakan bin/pyspark
script untuk sampai ke percikan percikan dan juga dapat melakukan Quick Start quide berhasil.
Namun, saya tidak bisa selama hidup saya mencari cara untuk menghentikan semua INFO
logging verbose setelah setiap perintah.
Saya telah mencoba hampir setiap skenario yang mungkin dalam kode di bawah ini (mengomentari, mengatur ke OFF) dalam log4j.properties
file saya di conf
folder di mana saya meluncurkan aplikasi dari serta pada setiap node dan tidak ada yang melakukan apa-apa. Saya masih mendapatkan INFO
pencetakan laporan logging setelah mengeksekusi setiap pernyataan.
Saya sangat bingung dengan bagaimana ini seharusnya bekerja.
#Set everything to be logged to the console log4j.rootCategory=INFO, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n
# Settings to quiet third party logs that are too verbose
log4j.logger.org.eclipse.jetty=WARN
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO
Ini classpath penuh saya ketika saya menggunakan SPARK_PRINT_LAUNCH_COMMAND
:
Spark Command: /Library/Java/JavaVirtualMachines/jdk1.8.0_05.jdk/Contents/Home/bin/java -cp: /root/spark-1.0.1-bin-hadoop2/conf: /root/spark-1.0.1 -bin-hadoop2 / conf: /root/spark-1.0.1-bin-hadoop2/lib/spark-assembly-1.0.1-hadoop2.2.0.jar: /root/spark-1.0.1-bin-hadoop2/lib /datanucleus-api-jdo-3.2.1.jar:/root/spark-1.0.1-bin-hadoop2/lib/datanucleus-core-3.2.2.jar:/root/spark-1.0.1-bin-hadoop2 /lib/datanucleus-rdbms-3.2.1.jar -XX: MaxPermSize = 128m -Djava.library.path = -Xms512m -Xmx512m org.apache.spark.deploy.SparkSubmit spark-shell --class org.apache.spark. repl. Utama
isi dari spark-env.sh
:
#!/usr/bin/env bash
# This file is sourced when running various Spark programs.
# Copy it as spark-env.sh and edit that to configure Spark for your site.
# Options read when launching programs locally with
# ./bin/run-example or ./bin/spark-submit
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public dns name of the driver program
# - SPARK_CLASSPATH=/root/spark-1.0.1-bin-hadoop2/conf/
# Options read by executors and drivers running inside the cluster
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public DNS name of the driver program
# - SPARK_CLASSPATH, default classpath entries to append
# - SPARK_LOCAL_DIRS, storage directories to use on this node for shuffle and RDD data
# - MESOS_NATIVE_LIBRARY, to point to your libmesos.so if you use Mesos
# Options read in YARN client mode
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
# - SPARK_EXECUTOR_INSTANCES, Number of workers to start (Default: 2)
# - SPARK_EXECUTOR_CORES, Number of cores for the workers (Default: 1).
# - SPARK_EXECUTOR_MEMORY, Memory per Worker (e.g. 1000M, 2G) (Default: 1G)
# - SPARK_DRIVER_MEMORY, Memory for Master (e.g. 1000M, 2G) (Default: 512 Mb)
# - SPARK_YARN_APP_NAME, The name of your application (Default: Spark)
# - SPARK_YARN_QUEUE, The hadoop queue to use for allocation requests (Default: ‘default’)
# - SPARK_YARN_DIST_FILES, Comma separated list of files to be distributed with the job.
# - SPARK_YARN_DIST_ARCHIVES, Comma separated list of archives to be distributed with the job.
# Options for the daemons used in the standalone deploy mode:
# - SPARK_MASTER_IP, to bind the master to a different IP address or hostname
# - SPARK_MASTER_PORT / SPARK_MASTER_WEBUI_PORT, to use non-default ports for the master
# - SPARK_MASTER_OPTS, to set config properties only for the master (e.g. "-Dx=y")
# - SPARK_WORKER_CORES, to set the number of cores to use on this machine
# - SPARK_WORKER_MEMORY, to set how much total memory workers have to give executors (e.g. 1000m, 2g)
# - SPARK_WORKER_PORT / SPARK_WORKER_WEBUI_PORT, to use non-default ports for the worker
# - SPARK_WORKER_INSTANCES, to set the number of worker processes per node
# - SPARK_WORKER_DIR, to set the working directory of worker processes
# - SPARK_WORKER_OPTS, to set config properties only for the worker (e.g. "-Dx=y")
# - SPARK_HISTORY_OPTS, to set config properties only for the history server (e.g. "-Dx=y")
# - SPARK_DAEMON_JAVA_OPTS, to set config properties for all daemons (e.g. "-Dx=y")
# - SPARK_PUBLIC_DNS, to set the public dns name of the master or workers
export SPARK_SUBMIT_CLASSPATH="$FWDIR/conf"