Untuk saya gunakan (nama simpul dengan posisi xy) saya menemukan jawaban @ user4179775 untuk yang paling bermanfaat / intuitif:
import pandas as pd
df = pd.read_csv('glycolysis_nodes_xy.tsv', sep='\t')
df.head()
nodes x y
0 c00033 146 958
1 c00031 601 195
...
xy_dict_list=dict([(i,[a,b]) for i, a,b in zip(df.nodes, df.x,df.y)])
xy_dict_list
{'c00022': [483, 868],
'c00024': [146, 868],
... }
xy_dict_tuples=dict([(i,(a,b)) for i, a,b in zip(df.nodes, df.x,df.y)])
xy_dict_tuples
{'c00022': (483, 868),
'c00024': (146, 868),
... }
Tambahan
Saya kemudian kembali ke masalah ini, untuk pekerjaan lain, tetapi terkait,. Berikut adalah pendekatan yang lebih dekat mencerminkan jawaban yang diterima [luar biasa].
node_df = pd.read_csv('node_prop-glycolysis_tca-from_pg.tsv', sep='\t')
node_df.head()
node kegg_id kegg_cid name wt vis
0 22 22 c00022 pyruvate 1 1
1 24 24 c00024 acetyl-CoA 1 1
...
Konversi bingkai data Pandas ke [daftar], {dict}, {dict of {dict}}, ...
Per jawaban yang diterima:
node_df.set_index('kegg_cid').T.to_dict('list')
{'c00022': [22, 22, 'pyruvate', 1, 1],
'c00024': [24, 24, 'acetyl-CoA', 1, 1],
... }
node_df.set_index('kegg_cid').T.to_dict('dict')
{'c00022': {'kegg_id': 22, 'name': 'pyruvate', 'node': 22, 'vis': 1, 'wt': 1},
'c00024': {'kegg_id': 24, 'name': 'acetyl-CoA', 'node': 24, 'vis': 1, 'wt': 1},
... }
Dalam kasus saya, saya ingin melakukan hal yang sama tetapi dengan kolom yang dipilih dari kerangka data Pandas, jadi saya perlu mengiris kolom. Ada dua pendekatan.
- Langsung:
(lihat: Konversi panda ke kamus dengan mendefinisikan kolom yang digunakan untuk nilai-nilai kunci )
node_df.set_index('kegg_cid')[['name', 'wt', 'vis']].T.to_dict('dict')
{'c00022': {'name': 'pyruvate', 'vis': 1, 'wt': 1},
'c00024': {'name': 'acetyl-CoA', 'vis': 1, 'wt': 1},
... }
- "Tidak langsung:" pertama, iris kolom / data yang diinginkan dari kerangka data Pandas (sekali lagi, dua pendekatan),
node_df_sliced = node_df[['kegg_cid', 'name', 'wt', 'vis']]
atau
node_df_sliced2 = node_df.loc[:, ['kegg_cid', 'name', 'wt', 'vis']]
yang kemudian dapat digunakan untuk membuat kamus kamus
node_df_sliced.set_index('kegg_cid').T.to_dict('dict')
{'c00022': {'name': 'pyruvate', 'vis': 1, 'wt': 1},
'c00024': {'name': 'acetyl-CoA', 'vis': 1, 'wt': 1},
... }
Dataframe.to_dict()
?