Bagaimana saya bisa menemukan nilai-p (signifikansi) dari masing-masing koefisien?
lm = sklearn.linear_model.LinearRegression()
lm.fit(x,y)
Bagaimana saya bisa menemukan nilai-p (signifikansi) dari masing-masing koefisien?
lm = sklearn.linear_model.LinearRegression()
lm.fit(x,y)
Jawaban:
Ini agak berlebihan tapi mari kita coba. Pertama mari kita gunakan statsmodel untuk mencari tahu apa nilai-p seharusnya
import pandas as pd
import numpy as np
from sklearn import datasets, linear_model
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm
from scipy import stats
diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target
X2 = sm.add_constant(X)
est = sm.OLS(y, X2)
est2 = est.fit()
print(est2.summary())
dan kita dapatkan
OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.518
Model: OLS Adj. R-squared: 0.507
Method: Least Squares F-statistic: 46.27
Date: Wed, 08 Mar 2017 Prob (F-statistic): 3.83e-62
Time: 10:08:24 Log-Likelihood: -2386.0
No. Observations: 442 AIC: 4794.
Df Residuals: 431 BIC: 4839.
Df Model: 10
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
const 152.1335 2.576 59.061 0.000 147.071 157.196
x1 -10.0122 59.749 -0.168 0.867 -127.448 107.424
x2 -239.8191 61.222 -3.917 0.000 -360.151 -119.488
x3 519.8398 66.534 7.813 0.000 389.069 650.610
x4 324.3904 65.422 4.958 0.000 195.805 452.976
x5 -792.1842 416.684 -1.901 0.058 -1611.169 26.801
x6 476.7458 339.035 1.406 0.160 -189.621 1143.113
x7 101.0446 212.533 0.475 0.635 -316.685 518.774
x8 177.0642 161.476 1.097 0.273 -140.313 494.442
x9 751.2793 171.902 4.370 0.000 413.409 1089.150
x10 67.6254 65.984 1.025 0.306 -62.065 197.316
==============================================================================
Omnibus: 1.506 Durbin-Watson: 2.029
Prob(Omnibus): 0.471 Jarque-Bera (JB): 1.404
Skew: 0.017 Prob(JB): 0.496
Kurtosis: 2.726 Cond. No. 227.
==============================================================================
Ok, mari kita mereproduksi ini. Ini agak berlebihan karena kita hampir mereproduksi analisis regresi linier menggunakan Matriks Aljabar. Tapi apa-apaan ini.
lm = LinearRegression()
lm.fit(X,y)
params = np.append(lm.intercept_,lm.coef_)
predictions = lm.predict(X)
newX = pd.DataFrame({"Constant":np.ones(len(X))}).join(pd.DataFrame(X))
MSE = (sum((y-predictions)**2))/(len(newX)-len(newX.columns))
# Note if you don't want to use a DataFrame replace the two lines above with
# newX = np.append(np.ones((len(X),1)), X, axis=1)
# MSE = (sum((y-predictions)**2))/(len(newX)-len(newX[0]))
var_b = MSE*(np.linalg.inv(np.dot(newX.T,newX)).diagonal())
sd_b = np.sqrt(var_b)
ts_b = params/ sd_b
p_values =[2*(1-stats.t.cdf(np.abs(i),(len(newX)-len(newX[0])))) for i in ts_b]
sd_b = np.round(sd_b,3)
ts_b = np.round(ts_b,3)
p_values = np.round(p_values,3)
params = np.round(params,4)
myDF3 = pd.DataFrame()
myDF3["Coefficients"],myDF3["Standard Errors"],myDF3["t values"],myDF3["Probabilities"] = [params,sd_b,ts_b,p_values]
print(myDF3)
Dan ini memberi kita.
Coefficients Standard Errors t values Probabilities
0 152.1335 2.576 59.061 0.000
1 -10.0122 59.749 -0.168 0.867
2 -239.8191 61.222 -3.917 0.000
3 519.8398 66.534 7.813 0.000
4 324.3904 65.422 4.958 0.000
5 -792.1842 416.684 -1.901 0.058
6 476.7458 339.035 1.406 0.160
7 101.0446 212.533 0.475 0.635
8 177.0642 161.476 1.097 0.273
9 751.2793 171.902 4.370 0.000
10 67.6254 65.984 1.025 0.306
Jadi kita dapat mereproduksi nilai dari statsmodel.
code
np.linalg.inv kadang-kadang dapat mengembalikan hasil bahkan ketika matriks tidak dapat dibalik. Mungkin itu masalahnya.
nan
s. Bagi saya itu karena X
data sampel saya jadi indeksnya mati. Ini menyebabkan kesalahan saat memanggil pd.DataFrame.join()
. Saya membuat perubahan satu baris ini dan sepertinya berfungsi sekarang:newX = pd.DataFrame({"Constant":np.ones(len(X))}).join(pd.DataFrame(X.reset_index(drop=True)))
scear-learn's LinearRegression tidak menghitung informasi ini tetapi Anda dapat dengan mudah memperluas kelas untuk melakukannya:
from sklearn import linear_model
from scipy import stats
import numpy as np
class LinearRegression(linear_model.LinearRegression):
"""
LinearRegression class after sklearn's, but calculate t-statistics
and p-values for model coefficients (betas).
Additional attributes available after .fit()
are `t` and `p` which are of the shape (y.shape[1], X.shape[1])
which is (n_features, n_coefs)
This class sets the intercept to 0 by default, since usually we include it
in X.
"""
def __init__(self, *args, **kwargs):
if not "fit_intercept" in kwargs:
kwargs['fit_intercept'] = False
super(LinearRegression, self)\
.__init__(*args, **kwargs)
def fit(self, X, y, n_jobs=1):
self = super(LinearRegression, self).fit(X, y, n_jobs)
sse = np.sum((self.predict(X) - y) ** 2, axis=0) / float(X.shape[0] - X.shape[1])
se = np.array([
np.sqrt(np.diagonal(sse[i] * np.linalg.inv(np.dot(X.T, X))))
for i in range(sse.shape[0])
])
self.t = self.coef_ / se
self.p = 2 * (1 - stats.t.cdf(np.abs(self.t), y.shape[0] - X.shape[1]))
return self
Dicuri dari sini .
Anda harus melihat statsmodels untuk jenis analisis statistik dengan Python.
EDIT: Mungkin bukan cara yang tepat untuk melakukannya, lihat komentar
Anda dapat menggunakan sklearn.feature_selection.f_regress.
Kode dalam jawaban elyase https://stackoverflow.com/a/27928411/4240413 tidak benar-benar berfungsi. Perhatikan bahwa sse adalah skalar, dan kemudian mencoba untuk mengulanginya. Kode berikut adalah versi yang dimodifikasi. Tidak bersih luar biasa, tapi saya pikir itu berfungsi lebih atau kurang.
class LinearRegression(linear_model.LinearRegression):
def __init__(self,*args,**kwargs):
# *args is the list of arguments that might go into the LinearRegression object
# that we don't know about and don't want to have to deal with. Similarly, **kwargs
# is a dictionary of key words and values that might also need to go into the orginal
# LinearRegression object. We put *args and **kwargs so that we don't have to look
# these up and write them down explicitly here. Nice and easy.
if not "fit_intercept" in kwargs:
kwargs['fit_intercept'] = False
super(LinearRegression,self).__init__(*args,**kwargs)
# Adding in t-statistics for the coefficients.
def fit(self,x,y):
# This takes in numpy arrays (not matrices). Also assumes you are leaving out the column
# of constants.
# Not totally sure what 'super' does here and why you redefine self...
self = super(LinearRegression, self).fit(x,y)
n, k = x.shape
yHat = np.matrix(self.predict(x)).T
# Change X and Y into numpy matricies. x also has a column of ones added to it.
x = np.hstack((np.ones((n,1)),np.matrix(x)))
y = np.matrix(y).T
# Degrees of freedom.
df = float(n-k-1)
# Sample variance.
sse = np.sum(np.square(yHat - y),axis=0)
self.sampleVariance = sse/df
# Sample variance for x.
self.sampleVarianceX = x.T*x
# Covariance Matrix = [(s^2)(X'X)^-1]^0.5. (sqrtm = matrix square root. ugly)
self.covarianceMatrix = sc.linalg.sqrtm(self.sampleVariance[0,0]*self.sampleVarianceX.I)
# Standard erros for the difference coefficients: the diagonal elements of the covariance matrix.
self.se = self.covarianceMatrix.diagonal()[1:]
# T statistic for each beta.
self.betasTStat = np.zeros(len(self.se))
for i in xrange(len(self.se)):
self.betasTStat[i] = self.coef_[0,i]/self.se[i]
# P-value for each beta. This is a two sided t-test, since the betas can be
# positive or negative.
self.betasPValue = 1 - t.cdf(abs(self.betasTStat),df)
Cara mudah untuk menarik nilai-p adalah dengan menggunakan regresi statsmodels:
import statsmodels.api as sm
mod = sm.OLS(Y,X)
fii = mod.fit()
p_values = fii.summary2().tables[1]['P>|t|']
Anda mendapatkan serangkaian nilai-p yang dapat Anda manipulasi (misalnya memilih urutan yang ingin Anda pertahankan dengan mengevaluasi setiap nilai-p):
p_value adalah salah satu dari f statistik. jika Anda ingin mendapatkan nilainya, cukup gunakan beberapa baris kode ini:
import statsmodels.api as sm
from scipy import stats
diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target
X2 = sm.add_constant(X)
est = sm.OLS(y, X2)
print(est.fit().f_pvalue)
Mungkin ada kesalahan dalam jawaban @JARH dalam kasus regresi multivariabel. (Saya tidak memiliki reputasi yang cukup untuk berkomentar.)
Di baris berikut:
p_values =[2*(1-stats.t.cdf(np.abs(i),(len(newX)-1))) for i in ts_b]
,
t-nilai mengikuti distribusi chi-squared derajat len(newX)-1
bukannya mengikuti distribusi chi-squared derajat len(newX)-len(newX.columns)-1
.
Jadi ini seharusnya:
p_values =[2*(1-stats.t.cdf(np.abs(i),(len(newX)-len(newX.columns)-1))) for i in ts_b]
(Lihat nilai-t untuk regresi OLS untuk lebih jelasnya)
Anda dapat menggunakan scipy untuk nilai-p. Kode ini dari dokumentasi yang lemah.
>>> from scipy import stats >>> import numpy as np >>> x = np.random.random(10) >>> y = np.random.random(10) >>> slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
Untuk one-liner, Anda dapat menggunakan fungsi pingouin.linear_regress ( penafian: Saya pencipta Pingouin ), yang berfungsi dengan regresi uni / multi-variasi menggunakan array NumPy atau Pandas DataFrame, mis::
import pingouin as pg
# Using a Pandas DataFrame `df`:
lm = pg.linear_regression(df[['x', 'z']], df['y'])
# Using a NumPy array:
lm = pg.linear_regression(X, y)
Outputnya adalah dataframe dengan koefisien beta, kesalahan standar, nilai-T, nilai-p dan interval kepercayaan untuk setiap prediktor, serta R ^ 2 dan penyesuaian R ^ 2 yang sesuai.