pandas.DataFrame.combine_first juga berfungsi.
( Perhatian: karena "Kolom indeks hasil akan menjadi gabungan dari masing-masing indeks dan kolom", Anda harus memeriksa indeks dan kolom cocok. )
import numpy as np
import pandas as pd
df = pd.DataFrame([["1","cat","mouse"],
["2","dog","elephant"],
["3","cat","giraf"],
["4",np.nan,"ant"]],columns=["Day","Cat1","Cat2"])
In: df["Cat1"].combine_first(df["Cat2"])
Out:
0 cat
1 dog
2 cat
3 ant
Name: Cat1, dtype: object
Bandingkan dengan jawaban lain:
%timeit df["Cat1"].combine_first(df["Cat2"])
181 µs ± 11.3 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
%timeit df['Cat1'].fillna(df['Cat2'])
253 µs ± 10.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit np.where(df.Cat1.isnull(), df.Cat2, df.Cat1)
88.1 µs ± 793 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Saya tidak menggunakan metode ini di bawah:
def is_missing(Cat1,Cat2):
if np.isnan(Cat1):
return Cat2
else:
return Cat1
df['Cat1'] = df.apply(lambda x: is_missing(x['Cat1'],x['Cat2']),axis=1)
karena itu akan memunculkan Exception:
TypeError: ("ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''", 'occurred at index 0')
yang berarti np.isnan dapat diterapkan ke array NumPy dari dtype asli (seperti np.float64), tetapi memunculkan TypeError saat diterapkan ke array objek .
Jadi saya merevisi metode:
def is_missing(Cat1,Cat2):
if pd.isnull(Cat1):
return Cat2
else:
return Cat1
%timeit df.apply(lambda x: is_missing(x['Cat1'],x['Cat2']),axis=1)
701 µs ± 7.38 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
fillna
membutuhkan seri.