Cara yang efisien untuk menjatuhkan baris dengan waktu yang tumpang tindih


9

Saya memiliki set data panjang dengan kolom yang mewakili waktu mulai dan berhenti, dan saya ingin menjatuhkan baris jika tumpang tindih dengan yang lain dan memiliki prioritas yang lebih tinggi (mis. 1 adalah prioritas tertinggi). Contoh data saya adalah

library(tidyverse)
library(lubridate)
times_df <- tibble(start = as_datetime(c("2019-10-05 14:05:25", 
    "2019-10-05 17:30:20", 
    "2019-10-05 17:37:00", 
    "2019-10-06 04:43:55", 
    "2019-10-06 04:53:45")), 
    stop = as_datetime(c("2019-10-05 14:19:20",
    "2019-10-05 17:45:15", 
    "2019-10-05 17:50:45", 
    "2019-10-06 04:59:00",
    "2019-10-06 05:07:10")), priority = c(5,3,4,3,4))

Cara saya menemukan serangan masalah ke belakang dengan menemukan tumpang tindih dengan nilai prioritas lebih tinggi dan kemudian menggunakan anti_joinuntuk menghapusnya dari kerangka data asli. Kode ini tidak berfungsi jika ada tiga periode yang tumpang tindih pada titik waktu yang sama dan saya yakin ada cara yang lebih efisien dan fungsional untuk melakukan ini.

dropOverlaps <- function(df) {
    drops <- df %>% 
        filter(stop > lead(start) | lag(stop) > start) %>% 
        mutate(group = ({seq(1, nrow(.)/2)} %>% 
        rep(each=2))) %>% 
        group_by(group) %>% 
        filter(priority == max(priority))
    anti_join(df, drops)
}

dropOverlaps(times_df)
#> Joining, by = c("start", "stop", "priority")
#> # A tibble: 3 x 3
#>   start               stop                priority
#>   <dttm>              <dttm>                 <dbl>
#> 1 2019-10-05 14:05:25 2019-10-05 14:19:20        5
#> 2 2019-10-05 17:30:20 2019-10-05 17:45:15        3
#> 3 2019-10-06 04:43:55 2019-10-06 04:59:00        3

Adakah yang bisa membantu saya mendapatkan output yang sama tetapi dengan fungsi yang lebih bersih? Bonus jika dapat menangani input dengan tiga periode waktu atau lebih yang semuanya tumpang tindih.


2
Jika mau, Anda dapat memeriksa semua kombinasi dengan combn, meskipun itu bisa menjadi mahal jika Anda memiliki banyak baris. times_df %>% mutate(interval = interval(start, stop)) %>% {combn(nrow(.), 2, function(x) if (int_overlaps(.$interval[x[1]], .$interval[x[2]])) x[which.min(.$priority[x])], simplify = FALSE)} %>% unlist() %>% {slice(times_df, -.)}
alistaire

Anda dapat mencoba mengacak- plyrangesacak mana yang mengadaptasi IRanges / GRanges (digunakan untuk menemukan tumpang tindih antar genom) untuk tidyverse. Saya pikir Anda bisa mengubah waktu Anda menjadi rentang "genomik" dengan mengubah hari Anda + jam menjadi integer jam ("choromosome") dan menit Anda + detik menjadi integer detik ("nukleotida"). Jika Anda melihat output dari pair_overlaps(dan menggunakan kolom ID untuk menghapus tumpang-tindih sendiri), Anda dapat mempertahankan prioritas Anda dan melakukan filter yang bagus dari hasil + inner_join dengan tabel asli Anda. Ini macet tetapi harus mengoptimalkan kemudahan pengkodean + efisiensi.
GenesRus

Atau Anda bisa menggunakan IRanges dengan datetimes dikonversi ke angka. Contohnya ada di sini: stackoverflow.com/questions/40647177/…
GenesRus

2
Saya baru saja menemukan data.table :: foverlaps dan ini akan menjadi solusi yang lebih baik daripada alat genom yang saya sarankan. Saya tidak punya waktu untuk memikirkan logika apa yang harus disimpan, tetapi harus dipecahkan.
GenesRus

Jawaban:


4

Berikut ini adalah data.tablesolusi menggunakanfoverlaps untuk mendeteksi catatan yang tumpang tindih (seperti yang telah disebutkan oleh @GenesRus). Catatan yang tumpang tindih ditugaskan ke grup untuk memfilter catatan dengan maks. prioritas dalam grup. Saya menambahkan dua rekaman lagi ke data contoh Anda, untuk menunjukkan bahwa prosedur ini juga berfungsi untuk tiga atau lebih rekaman yang tumpang tindih:

Sunting: Saya memodifikasi dan menerjemahkan solusi @ pgcudahy data.tableyang memberikan kode lebih cepat:

library(data.table)
library(lubridate)

times_df <- data.frame(
  start = as_datetime(
    c(
      "2019-10-05 14:05:25",
      "2019-10-05 17:30:20",
      "2019-10-05 17:37:00",
      "2019-10-06 04:43:55",
      "2019-10-06 04:53:45",
      "2019-10-06 04:53:46",
      "2019-10-06 04:53:47"
    )
  ),
  stop = as_datetime(
    c(
      "2019-10-05 14:19:20",
      "2019-10-05 17:45:15",
      "2019-10-05 17:50:45",
      "2019-10-06 04:59:00",
      "2019-10-06 05:07:10",
      "2019-10-06 05:07:11",
      "2019-10-06 05:07:12"
    )
  ),
  priority = c(5, 3, 4, 3, 4, 5, 6)
)

resultDT <- setDT(times_df, key="start")[!(stop >= shift(start, type="lead", fill = TRUE) & priority > shift(priority, type="lead", fill = TRUE)) &
                                         !(start <= shift(stop, type="lag", fill = FALSE) & priority > shift(priority, type="lag", fill = TRUE))]

# old approach ------------------------------------------------------------
# times_dt <- as.data.table(times_df)
# setkey(times_dt, start, stop)[, index := .I]
# overlaps_dt <- foverlaps(times_dt, times_dt, type = "any", which = TRUE)[xid != yid][, group := fifelse(xid > yid, yes = paste0(yid, "_", xid), no = paste0(xid, "_", yid))]
# overlaps_merged <- merge(times_dt, overlaps_dt, by.x = "index", by.y = "xid")[, .(delete_index = index[priority == max(priority)]), by = "group"]
# result_dt <- times_dt[!unique(overlaps_merged$delete_index)][, index := NULL]

Untuk perincian lebih lanjut, lihat ?foverlaps- Ada beberapa fitur yang lebih berguna yang diterapkan untuk mengontrol apa yang dianggap tumpang tindih seperti maxgap, minoverlapatau type(setiap, di dalam, mulai, berakhir dan sama).


Perbarui - patokan baru

Unit: microseconds
          expr       min         lq      mean    median        uq        max neval
          Paul 25572.550 26105.2710 30183.930 26514.342 29614.272 153810.600   100
           MKa  5100.447  5276.8350  6508.333  5401.275  5832.270  23137.879   100
      pgcudahy  3330.243  3474.4345  4284.640  3556.802  3748.203  21241.260   100
 ismirsehregal   711.084   913.3475  1144.829  1013.096  1433.427   2316.159   100

Kode benchmark:

#### library ----

library(dplyr)
library(lubridate)
library(igraph)
library(data.table)
library(microbenchmark)

#### data ----

times_df <- data.frame(
  start = as_datetime(
    c(
      "2019-10-05 14:05:25",
      "2019-10-05 17:30:20",
      "2019-10-05 17:37:00",
      "2019-10-06 04:43:55",
      "2019-10-06 04:53:45",
      "2019-10-06 04:53:46",
      "2019-10-06 04:53:47"
    )
  ),
  stop = as_datetime(
    c(
      "2019-10-05 14:19:20",
      "2019-10-05 17:45:15",
      "2019-10-05 17:50:45",
      "2019-10-06 04:59:00",
      "2019-10-06 05:07:10",
      "2019-10-06 05:07:11",
      "2019-10-06 05:07:12"
    )
  ),
  priority = c(5, 3, 4, 3, 4, 5, 6)
)

times_tib <- as_tibble(times_df)
times_dt <- as.data.table(times_df)

#### group_interval function ----

# buffer to take a form similar to: days(1), weeks(2), etc.
group_interval <- function(start, end, buffer = 0) {

  dat <- tibble(rid = 1:length(start),
                start = start,
                end = end,
                intervals = case_when(!is.na(start) & !is.na(end) ~ interval(start, end),
                                      is.na(start) ~ interval(end, end),
                                      is.na(end) ~ interval(start, start),
                                      TRUE ~ interval(NA, NA)))

  # apply buffer period to intervals
  int_start(dat$intervals) <- int_start(dat$intervals) - buffer + seconds(0.01)
  int_end(dat$intervals) <- int_end(dat$intervals) + buffer - seconds(0.01)

  df_overlap <- bind_cols(
    expand.grid(dat$rid, dat$rid), # make a 2 col table with every combination of id numbers
    expand.grid(dat$intervals, dat$intervals)) %>% # make a combination of every interval
    mutate(overlap = int_overlaps(.data$Var11, .data$Var21)) %>% # determine if intervals overlap
    rename("row" = "Var1", "col" = "Var2")

  # Find groups via graph theory See igraph package
  dat_graph <- graph_from_data_frame(filter(df_overlap, overlap) %>% select(row, col))
  groups <- components(dat_graph)$membership[df_overlap$row]

  # create a 2 column df with row (index) and group number, arrange on row number and return distinct values
  df_groups <- tibble(row = as.integer(names(groups)), group = groups) %>%
    unique()

  # returns
  left_join(select(dat, rid), df_groups, by = c("rid" = "row"))$group

}

#### benchmark ----

library(igraph)
library(data.table)
library(dplyr)
library(lubridate)
library(microbenchmark)

df_Paul <- df_MKa <- df_pgcudahy <- df_ismirsehregal <- times_df <- data.frame(
  start = as_datetime(
    c(
      "2019-10-05 14:05:25",
      "2019-10-05 17:30:20",
      "2019-10-05 17:37:00",
      "2019-10-06 04:43:55",
      "2019-10-06 04:53:45",
      "2019-10-06 04:53:46",
      "2019-10-07 06:00:00",
      "2019-10-07 06:10:00",
      "2019-10-07 06:20:00",
      "2019-10-08 06:00:00",
      "2019-10-08 06:10:00",
      "2019-10-08 06:20:00",
      "2019-10-09 03:00:00",
      "2019-10-09 03:10:00",
      "2019-10-10 03:00:00",
      "2019-10-10 03:10:00",
      "2019-10-11 05:00:00",
      "2019-10-11 05:00:00")
  ),
  stop = as_datetime(
    c(
      "2019-10-05 14:19:20",
      "2019-10-05 17:45:15",
      "2019-10-05 17:50:45",
      "2019-10-06 04:59:00",
      "2019-10-06 05:07:10",
      "2019-10-06 05:07:11",
      "2019-10-07 06:18:00",
      "2019-10-07 06:28:00",
      "2019-10-07 06:38:00",
      "2019-10-08 06:18:00",
      "2019-10-08 06:28:00",
      "2019-10-08 06:38:00",
      "2019-10-09 03:30:00",
      "2019-10-09 03:20:00",
      "2019-10-10 03:30:00",
      "2019-10-10 03:20:00",
      "2019-10-11 05:40:00",
      "2019-10-11 05:40:00")
  ),
  priority = c(5, 3, 4, 3, 4, 5, 4, 3, 4, 3, 4, 3, 1, 2, 2, 1, 3, 4)
)


benchmarks <- microbenchmark(Paul = {
  group_interval <- function(start, end, buffer = 0) {

    dat <- tibble(rid = 1:length(start),
                  start = start,
                  end = end,
                  intervals = case_when(!is.na(start) & !is.na(end) ~ interval(start, end),
                                        is.na(start) ~ interval(end, end),
                                        is.na(end) ~ interval(start, start),
                                        TRUE ~ interval(NA, NA)))

    int_start(dat$intervals) <- int_start(dat$intervals) - buffer + seconds(0.01)
    int_end(dat$intervals) <- int_end(dat$intervals) + buffer - seconds(0.01)

    df_overlap <- bind_cols(
      expand.grid(dat$rid, dat$rid), # make a 2 col table with every combination of id numbers
      expand.grid(dat$intervals, dat$intervals)) %>% # make a combination of every interval
      mutate(overlap = int_overlaps(.data$Var11, .data$Var21)) %>% # determine if intervals overlap
      rename("row" = "Var1", "col" = "Var2")

    dat_graph <- graph_from_data_frame(filter(df_overlap, overlap) %>% select(row, col))
    groups <- components(dat_graph)$membership[df_overlap$row]

    df_groups <- tibble(row = as.integer(names(groups)), group = groups) %>%
      unique()

    left_join(select(dat, rid), df_groups, by = c("rid" = "row"))$group
  }

  times_tib <- as_tibble(df_Paul)

  mutate(times_tib, group = group_interval(start, stop)) %>%
    group_by(group) %>%
    top_n(1, desc(priority)) %>%
    ungroup() %>%
    select(-group)
},
MKa = {
  df_MKa$id <- 1:nrow(df_MKa)

  # Create consolidated df which we will use to check if stop date is in between start and stop
  my_df <- bind_rows(replicate(n = nrow(df_MKa), expr = df_MKa, simplify = FALSE))
  my_df$stop_chk <- rep(df_MKa$stop, each = nrow(df_MKa))

  # Flag if stop date sits in between start and stop
  my_df$chk <- my_df$stop_chk >= my_df$start & my_df$stop_chk <= my_df$stop
  my_df$chk_id <- df_MKa[match(my_df$stop_chk, df_MKa$stop), "id"]

  # Using igrpah to cluster ids to create unique groups
  # this will identify any overlapping groups
  library(igraph)
  g <- graph.data.frame(my_df[my_df$chk == TRUE, c("id", "chk_id")])
  df_g <- data.frame(clusters(g)$membership)
  df_g$chk_id <- row.names(df_g)

  # copy the unique groups to the df
  my_df$new_id <- df_g[match(my_df$chk_id, df_g$chk_id), "clusters.g..membership"]
  my_df %>% 
    filter(chk == TRUE) %>%
    arrange(priority) %>%
    filter(!duplicated(new_id)) %>%
    select(start, stop, priority) %>%
    arrange(start)
}, pgcudahy = {
  df_pgcudahy %>%
    arrange(start) %>%
    mutate(remove1 = ifelse((stop >= lead(start, default=FALSE)) & 
                              (priority > lead(priority, default=(max(priority) + 1))), TRUE, FALSE)) %>%
    mutate(remove2 = ifelse((start <= lag(stop, default=FALSE)) & 
                              (priority > lag(priority, default=(max(priority) + 1))), TRUE, FALSE)) %>%
    filter(remove1 == FALSE & remove2 == FALSE) %>%
    select(1:3)
}, ismirsehregal = {
  setDT(df_ismirsehregal, key="start")[!(stop >= shift(start, type="lead", fill = TRUE) & priority > shift(priority, type="lead", fill = TRUE)) &
                                       !(start <= shift(stop, type="lag", fill = FALSE) & priority > shift(priority, type="lag", fill = TRUE))]
})

benchmarks

1

Saya memiliki fungsi pembantu yang mengelompokkan data yang tumpang tindih / waktu menggunakan paket igraph (ini dapat mencakup buffer tumpang tindih, yaitu terminal berada dalam 1 menit ...)

Saya menggunakannya untuk mengelompokkan data Anda berdasarkan interval di lubridate, kemudian melakukan beberapa pertengkaran data untuk mendapatkan hanya entri prioritas utama dari waktu yang tumpang tindih.

Saya tidak yakin seberapa baik skala itu.

#### library ----

library(dplyr)
library(lubridate)
library(igraph)

#### data ----

times_df <- tibble(start = as_datetime(c("2019-10-05 14:05:25", 
                                         "2019-10-05 17:30:20", 
                                         "2019-10-05 17:37:00", 
                                         "2019-10-06 04:43:55", 
                                         "2019-10-06 04:53:45")), 
                   stop = as_datetime(c("2019-10-05 14:19:20",
                                        "2019-10-05 17:45:15", 
                                        "2019-10-05 17:50:45", 
                                        "2019-10-06 04:59:00",
                                        "2019-10-06 05:07:10")), priority = c(5,3,4,3,4))

#### group_interval function ----

# buffer to take a form similar to: days(1), weeks(2), etc.
group_interval <- function(start, end, buffer = 0) {

  dat <- tibble(rid = 1:length(start),
                start = start,
                end = end,
                intervals = case_when(!is.na(start) & !is.na(end) ~ interval(start, end),
                                      is.na(start) ~ interval(end, end),
                                      is.na(end) ~ interval(start, start),
                                      TRUE ~ interval(NA, NA)))

  # apply buffer period to intervals
  int_start(dat$intervals) <- int_start(dat$intervals) - buffer + seconds(0.01)
  int_end(dat$intervals) <- int_end(dat$intervals) + buffer - seconds(0.01)

  df_overlap <- bind_cols(
    expand.grid(dat$rid, dat$rid), # make a 2 col table with every combination of id numbers
    expand.grid(dat$intervals, dat$intervals)) %>% # make a combination of every interval
    mutate(overlap = int_overlaps(.data$Var11, .data$Var21)) %>% # determine if intervals overlap
    rename("row" = "Var1", "col" = "Var2")

  # Find groups via graph theory See igraph package
  dat_graph <- graph_from_data_frame(filter(df_overlap, overlap) %>% select(row, col))
  groups <- components(dat_graph)$membership[df_overlap$row]

  # create a 2 column df with row (index) and group number, arrange on row number and return distinct values
  df_groups <- tibble(row = as.integer(names(groups)), group = groups) %>%
    unique()

  # returns
  left_join(select(dat, rid), df_groups, by = c("rid" = "row"))$group

}

#### data munging ----

mutate(times_df, group = group_interval(start, stop)) %>%
  group_by(group) %>%
  top_n(1, desc(priority)) %>% # not sure why desc is needed, but top_n was giving the lower 
  ungroup() %>%
  select(-group)

Pemberian yang mana:

    # A tibble: 3 x 3
      start               stop                priority
      <dttm>              <dttm>                 <dbl>
    1 2019-10-05 14:05:25 2019-10-05 14:19:20        5
    2 2019-10-05 17:30:20 2019-10-05 17:45:15        3
    3 2019-10-06 04:43:55 2019-10-06 04:59:00        3

0

Saya pergi ke lubang kelinci melihat pohon interval (dan implementasi R seperti IRanges / plyranges) tapi saya pikir masalah ini tidak memerlukan struktur data yang terlibat karena waktu mulai dapat dengan mudah disortir. Saya juga memperluas set tes seperti @ismirsehregal untuk mencakup lebih banyak hubungan interval potensial seperti interval yang dimulai sebelum dan berakhir setelah tetangganya, atau ketika tiga interval tumpang tindih tetapi yang pertama dan terakhir tidak saling tumpang tindih, atau dua interval yang dimulai dan berhenti pada waktu yang persis sama.

library(lubridate)
times_df <- data.frame(
  start = as_datetime(
    c(
      "2019-10-05 14:05:25",
      "2019-10-05 17:30:20",
      "2019-10-05 17:37:00",
      "2019-10-06 04:43:55",
      "2019-10-06 04:53:45",
      "2019-10-06 04:53:46",
      "2019-10-07 06:00:00",
      "2019-10-07 06:10:00",
      "2019-10-07 06:20:00",
      "2019-10-08 06:00:00",
      "2019-10-08 06:10:00",
      "2019-10-08 06:20:00",
      "2019-10-09 03:00:00",
      "2019-10-09 03:10:00",
      "2019-10-10 03:00:00",
      "2019-10-10 03:10:00",
      "2019-10-11 05:00:00",
      "2019-10-11 05:00:00")
  ),
  stop = as_datetime(
    c(
      "2019-10-05 14:19:20",
      "2019-10-05 17:45:15",
      "2019-10-05 17:50:45",
      "2019-10-06 04:59:00",
      "2019-10-06 05:07:10",
      "2019-10-06 05:07:11",
      "2019-10-07 06:18:00",
      "2019-10-07 06:28:00",
      "2019-10-07 06:38:00",
      "2019-10-08 06:18:00",
      "2019-10-08 06:28:00",
      "2019-10-08 06:38:00",
      "2019-10-09 03:30:00",
      "2019-10-09 03:20:00",
      "2019-10-10 03:30:00",
      "2019-10-10 03:20:00",
      "2019-10-11 05:40:00",
      "2019-10-11 05:40:00")
  ),
  priority = c(5, 3, 4, 3, 4, 5, 4, 3, 4, 3, 4, 3, 1, 2, 2, 1, 3, 4)
)

Saya kemudian membuat dua melewati setiap interval untuk melihat apakah itu tumpang tindih dengan pendahulunya atau penggantinya

stop >= lead(start, default=FALSE) dan start <= lag(stop, default=FALSE))

Selama setiap lintasan, ada pemeriksaan kedua untuk melihat apakah prioritas interval memiliki nilai numerik yang lebih tinggi daripada pendahulu atau penggantinya priority > lead(priority, default=(max(priority) + 1)). Selama setiap pass, jika kedua kondisi ini benar, bendera "hapus" disetel ke true di kolom baru menggunakan mutate. Setiap baris dengan tanda hapus kemudian disaring.

library(tidyverse)
times_df %>%
    arrange(start) %>%
    mutate(remove1 = ifelse((stop >= lead(start, default=FALSE)) & 
                            (priority > lead(priority, default=(max(priority) + 1))), 
                            TRUE, FALSE)) %>%
    mutate(remove2 = ifelse((start <= lag(stop, default=FALSE)) & 
                            (priority > lag(priority, default=(max(priority) + 1))), 
                            TRUE, FALSE)) %>%
    filter(remove1 == FALSE & remove2 == FALSE) %>%
    select(1:3)

Ini menghindari memeriksa semua kemungkinan kombinasi interval seperti jawaban @ Paul (perbandingan 2n versus n!) Serta mengakomodasi ketidaktahuan saya akan teori grafik :)

Demikian pula jawaban @ ismirsehregal memiliki sihir data.table yang di luar pemahaman saya.

Solusi @ MKa tampaknya tidak bekerja dengan> 2 periode yang tumpang tindih

Pengujian memberikan solusi

#>          expr       min        lq      mean    median        uq       max
#> 1 dplyr_igraph 36.568842 41.510950 46.692147 43.362724 47.065277 241.92073
#> 2  data.table  9.126385  9.935049 11.395977 10.521032 11.446257  34.26953
#> 3       dplyr  5.031397  5.500363  6.224059  5.902589  6.373197  15.09273
#>   neval
#> 1   100
#> 2   100
#> 3   100

Dari kode ini

library(igraph)
library(data.table)
library(microbenchmark)
benchmarks <- microbenchmark(dplyr_igraph = {
  group_interval <- function(start, end, buffer = 0) {

  dat <- tibble(rid = 1:length(start),
                start = start,
                end = end,
                intervals = case_when(!is.na(start) & !is.na(end) ~ interval(start, end),
                                      is.na(start) ~ interval(end, end),
                                      is.na(end) ~ interval(start, start),
                                      TRUE ~ interval(NA, NA)))

  int_start(dat$intervals) <- int_start(dat$intervals) - buffer + seconds(0.01)
  int_end(dat$intervals) <- int_end(dat$intervals) + buffer - seconds(0.01)

  df_overlap <- bind_cols(
    expand.grid(dat$rid, dat$rid), # make a 2 col table with every combination of id numbers
    expand.grid(dat$intervals, dat$intervals)) %>% # make a combination of every interval
    mutate(overlap = int_overlaps(.data$Var11, .data$Var21)) %>% # determine if intervals overlap
    rename("row" = "Var1", "col" = "Var2")

  dat_graph <- graph_from_data_frame(filter(df_overlap, overlap) %>% select(row, col))
  groups <- components(dat_graph)$membership[df_overlap$row]

  df_groups <- tibble(row = as.integer(names(groups)), group = groups) %>%
    unique()

  left_join(select(dat, rid), df_groups, by = c("rid" = "row"))$group
  }

  times_tib <- as_tibble(times_df)

  mutate(times_tib, group = group_interval(start, stop)) %>%
    group_by(group) %>%
    top_n(1, desc(priority)) %>%
    ungroup() %>%
    select(-group)
}, data.table = {
  times_dt <- as.data.table(times_df)
  setkey(times_dt, start, stop)[, index := .I]
  overlaps_dt <- foverlaps(times_dt, times_dt, type = "any", which = TRUE)[xid != yid][, group := fifelse(xid > yid, yes = paste0(yid, "_", xid), no = paste0(xid, "_", yid))]
  overlaps_merged <- merge(times_dt, overlaps_dt, by.x = "index", by.y = "xid")[, .(delete_index = index[priority == max(priority)]), by = "group"]
  result_dt <- times_dt[!unique(overlaps_merged$delete_index)][, index := NULL]
}, dplyr = {
times_df %>%
    arrange(start) %>%
    mutate(remove1 = ifelse((stop >= lead(start, default=FALSE)) & 
                            (priority > lead(priority, default=(max(priority) + 1))), TRUE, FALSE)) %>%
    mutate(remove2 = ifelse((start <= lag(stop, default=FALSE)) & 
                            (priority > lag(priority, default=(max(priority) + 1))), TRUE, FALSE)) %>%
    filter(remove1 == FALSE & remove2 == FALSE) %>%
    select(1:3)
})
summary(benchmarks)

Terima kasih atas umpan baliknya - Saya tidak terbiasa dengan tibblestruktur dan sepertinya pull()menyebabkan masalah. Sebab dataframe(), itu harus bekerja apa adanya. Baru saja memperbarui jawabannya.
MKa

Pendekatan yang bagus, saya mengambil logika Anda, memodifikasinya sedikit dan menerjemahkannya data.tableyang membuat segalanya lebih cepat (silakan periksa tolok ukur baru saya).
ismirsehregal

0

Juga menggunakan igraphuntuk mengidentifikasi grup yang tumpang tindih, Anda dapat mencoba:

library(tidyverse)
library(lubridate)
times_df <- data.frame(
  start = as_datetime(
    c(
      "2019-10-05 14:05:25",
      "2019-10-05 17:30:20",
      "2019-10-05 17:37:00",
      "2019-10-06 04:43:55",
      "2019-10-06 04:53:45",
      "2019-10-06 04:53:46",
      "2019-10-07 06:00:00",
      "2019-10-07 06:10:00",
      "2019-10-07 06:20:00",
      "2019-10-08 06:00:00",
      "2019-10-08 06:10:00",
      "2019-10-08 06:20:00",
      "2019-10-09 03:00:00",
      "2019-10-09 03:10:00",
      "2019-10-10 03:00:00",
      "2019-10-10 03:10:00",
      "2019-10-11 05:00:00",
      "2019-10-11 05:00:00")
  ),
  stop = as_datetime(
    c(
      "2019-10-05 14:19:20",
      "2019-10-05 17:45:15",
      "2019-10-05 17:50:45",
      "2019-10-06 04:59:00",
      "2019-10-06 05:07:10",
      "2019-10-06 05:07:11",
      "2019-10-07 06:18:00",
      "2019-10-07 06:28:00",
      "2019-10-07 06:38:00",
      "2019-10-08 06:18:00",
      "2019-10-08 06:28:00",
      "2019-10-08 06:38:00",
      "2019-10-09 03:30:00",
      "2019-10-09 03:20:00",
      "2019-10-10 03:30:00",
      "2019-10-10 03:20:00",
      "2019-10-11 05:40:00",
      "2019-10-11 05:40:00")
  ),
  priority = c(5, 3, 4, 3, 4, 5, 4, 3, 4, 3, 4, 3, 1, 2, 2, 1, 3, 4)
)
times_df$id <- 1:nrow(times_df)


# Create consolidated df which we will use to check if stop date is in between start and stop
my_df <- bind_rows(replicate(n = nrow(times_df), expr = times_df, simplify = FALSE))
my_df$stop_chk <- rep(times_df$stop, each = nrow(times_df))

# Flag if stop date sits in between start and stop
my_df$chk <- my_df$stop_chk >= my_df$start & my_df$stop_chk <= my_df$stop
my_df$chk_id <- times_df[match(my_df$stop_chk, times_df$stop), "id"]

# Using igrpah to cluster ids to create unique groups
# this will identify any overlapping groups
library(igraph)
g <- graph.data.frame(my_df[my_df$chk == TRUE, c("id", "chk_id")])
df_g <- data.frame(clusters(g)$membership)
df_g$chk_id <- row.names(df_g)

# copy the unique groups to the df
my_df$new_id <- df_g[match(my_df$chk_id, df_g$chk_id), "clusters.g..membership"]
my_df %>% 
  filter(chk == TRUE) %>%
  arrange(priority) %>%
  filter(!duplicated(new_id)) %>%
  select(start, stop, priority) %>%
  arrange(start)
Dengan menggunakan situs kami, Anda mengakui telah membaca dan memahami Kebijakan Cookie dan Kebijakan Privasi kami.
Licensed under cc by-sa 3.0 with attribution required.