Panda lambat DataFrame MultiIndex reindex


13

Saya memiliki DataFrame panda dalam bentuk:

                       id                start_time  sequence_no    value
0                      71 2018-10-17 20:12:43+00:00       114428        3
1                      71 2018-10-17 20:12:43+00:00       114429        3
2                      71 2018-10-17 20:12:43+00:00       114431       79
3                      71 2019-11-06 00:51:14+00:00       216009      100
4                      71 2019-11-06 00:51:14+00:00       216011      150
5                      71 2019-11-06 00:51:14+00:00       216013      180
6                      92 2019-12-01 00:51:14+00:00       114430       19
7                      92 2019-12-01 00:51:14+00:00       114433       79
8                      92 2019-12-01 00:51:14+00:00       114434      100

Apa yang saya coba lakukan adalah mengisi sequence_no per id / start_timecombo yang hilang . Sebagai contoh, id/ start_timepairing dari 71dan 2018-10-17 20:12:43+00:00, tidak ada sequence_no 114430. Untuk setiap tambahan yang hilang sequence_no, saya juga perlu rata-rata / interpolasi nilai valuekolom yang hilang . Jadi, pemrosesan akhir dari data di atas akan tampak seperti:

                       id                start_time  sequence_no    value
0                      71 2018-10-17 20:12:43+00:00       114428        3
1                      71 2018-10-17 20:12:43+00:00       114429        3
2                      71 2018-10-17 20:12:43+00:00       114430       41  **
3                      71 2018-10-17 20:12:43+00:00       114431       79
4                      71 2019-11-06 00:51:14+00:00       216009      100  
5                      71 2019-11-06 00:51:14+00:00       216010      125  **
6                      71 2019-11-06 00:51:14+00:00       216011      150
7                      71 2019-11-06 00:51:14+00:00       216012      165  **
8                      71 2019-11-06 00:51:14+00:00       216013      180
9                      92 2019-12-01 00:51:14+00:00       114430       19
10                     92 2019-12-01 00:51:14+00:00       114431       39  **
11                     92 2019-12-01 00:51:14+00:00       114432       59  **
12                     92 2019-12-01 00:51:14+00:00       114433       79
13                     92 2019-12-01 00:51:14+00:00       114434      100

( **ditambahkan di sebelah kanan baris yang baru disisipkan untuk memudahkan pembacaan)

Solusi asli saya untuk melakukan ini sangat bergantung pada loop Python di atas meja besar data, jadi sepertinya tempat yang ideal untuk numpy dan panda bersinar. Bersandar pada jawaban SO seperti Pandas: buat baris untuk mengisi kesenjangan numerik , saya datang dengan:

import pandas as pd
import numpy as np

# Generate dummy data
df = pd.DataFrame([
    (71, '2018-10-17 20:12:43+00:00', 114428, 3),
    (71, '2018-10-17 20:12:43+00:00', 114429, 3),
    (71, '2018-10-17 20:12:43+00:00', 114431, 79),
    (71, '2019-11-06 00:51:14+00:00', 216009, 100),
    (71, '2019-11-06 00:51:14+00:00', 216011, 150),
    (71, '2019-11-06 00:51:14+00:00', 216013, 180),
    (92, '2019-12-01 00:51:14+00:00', 114430, 19),
    (92, '2019-12-01 00:51:14+00:00', 114433, 79),
    (92, '2019-12-01 00:51:14+00:00', 114434, 100),   
], columns=['id', 'start_time', 'sequence_no', 'value'])

# create a new DataFrame with the min/max `sequence_no` values for each `id`/`start_time` pairing
by_start = df.groupby(['start_time', 'id'])
ranges = by_start.agg(
    sequence_min=('sequence_no', np.min), sequence_max=('sequence_no', np.max)
)
reset = ranges.reset_index()

mins = reset['sequence_min']
maxes = reset['sequence_max']

# Use those min/max values to generate a sequence with ALL values in that range
expanded = pd.DataFrame(dict(
    start_time=reset['start_time'].repeat(maxes - mins + 1),
    id=reset['id'].repeat(maxes - mins + 1),
    sequence_no=np.concatenate([np.arange(mins, maxes + 1) for mins, maxes in zip(mins, maxes)])
))

# Use the above generated DataFrame as an index to generate the missing rows, then interpolate
expanded_index = pd.MultiIndex.from_frame(expanded)
df.set_index(
    ['start_time', 'id', 'sequence_no']
).reindex(expanded_index).interpolate()

Outputnya benar, tetapi berjalan pada kecepatan yang hampir sama persis dengan solusi banyak-python-loop saya. Saya yakin ada tempat saya bisa memotong beberapa langkah, tetapi bagian paling lambat dalam pengujian saya tampaknya adalah reindex. Mengingat bahwa data dunia nyata terdiri dari hampir satu juta baris (sering dioperasikan), apakah ada cara yang jelas untuk mendapatkan beberapa keunggulan kinerja daripada apa yang telah saya tulis? Adakah cara saya dapat mempercepat transformasi ini?

Pembaruan 9/12/2019

Menggabungkan solusi gabungan dari jawaban ini dengan konstruksi asli dari kerangka data diperluas menghasilkan hasil tercepat sejauh ini, ketika diuji pada dataset yang cukup besar:

import pandas as pd
import numpy as np

# Generate dummy data
df = pd.DataFrame([
    (71, '2018-10-17 20:12:43+00:00', 114428, 3),
    (71, '2018-10-17 20:12:43+00:00', 114429, 3),
    (71, '2018-10-17 20:12:43+00:00', 114431, 79),
    (71, '2019-11-06 00:51:14+00:00', 216009, 100),
    (71, '2019-11-06 00:51:14+00:00', 216011, 150),
    (71, '2019-11-06 00:51:14+00:00', 216013, 180),
    (92, '2019-12-01 00:51:14+00:00', 114430, 19),
    (92, '2019-12-01 00:51:14+00:00', 114433, 79),
    (92, '2019-12-01 00:51:14+00:00', 114434, 100),   
], columns=['id', 'start_time', 'sequence_no', 'value'])

# create a ranges df with groupby and agg
ranges = df.groupby(['start_time', 'id'])['sequence_no'].agg([
    ('sequence_min', np.min), ('sequence_max', np.max)
])
reset = ranges.reset_index()

mins = reset['sequence_min']
maxes = reset['sequence_max']

# Use those min/max values to generate a sequence with ALL values in that range
expanded = pd.DataFrame(dict(
    start_time=reset['start_time'].repeat(maxes - mins + 1),
    id=reset['id'].repeat(maxes - mins + 1),
    sequence_no=np.concatenate([np.arange(mins, maxes + 1) for mins, maxes in zip(mins, maxes)])
))

# merge expanded and df
merge = expanded.merge(df, on=['start_time', 'id', 'sequence_no'], how='left')
# interpolate and assign values 
merge['value'] = merge['value'].interpolate()

Jawaban:


8

menggunakan mergebukannya reindexmempercepat hal-hal. Juga, menggunakan peta sebagai ganti pemahaman daftar mungkin juga.

# Generate dummy data
df = pd.DataFrame([
    (71, '2018-10-17 20:12:43+00:00', 114428, 3),
    (71, '2018-10-17 20:12:43+00:00', 114429, 3),
    (71, '2018-10-17 20:12:43+00:00', 114431, 79),
    (71, '2019-11-06 00:51:14+00:00', 216009, 100),
    (71, '2019-11-06 00:51:14+00:00', 216011, 150),
    (71, '2019-11-06 00:51:14+00:00', 216013, 180),
    (92, '2019-12-01 00:51:14+00:00', 114430, 19),
    (92, '2019-12-01 00:51:14+00:00', 114433, 79),
    (92, '2019-12-01 00:51:14+00:00', 114434, 100),   
], columns=['id', 'start_time', 'sequence_no', 'value'])

# create a ranges df with groupby and agg
ranges = df.groupby(['start_time', 'id'])['sequence_no'].agg([('sequence_min', np.min), ('sequence_max', np.max)])
# map with range to create the sequence number rnage
ranges['sequence_no'] = list(map(lambda x,y: range(x,y), ranges.pop('sequence_min'), ranges.pop('sequence_max')+1))
# explode you DataFrame
new_df = ranges.explode('sequence_no')
# merge new_df and df
merge = new_df.reset_index().merge(df, on=['start_time', 'id', 'sequence_no'], how='left')
# interpolate and assign values 
merge['value'] = merge['value'].interpolate()

                   start_time  id sequence_no  value
0   2018-10-17 20:12:43+00:00  71      114428    3.0
1   2018-10-17 20:12:43+00:00  71      114429    3.0
2   2018-10-17 20:12:43+00:00  71      114430   41.0
3   2018-10-17 20:12:43+00:00  71      114431   79.0
4   2019-11-06 00:51:14+00:00  71      216009  100.0
5   2019-11-06 00:51:14+00:00  71      216010  125.0
6   2019-11-06 00:51:14+00:00  71      216011  150.0
7   2019-11-06 00:51:14+00:00  71      216012  165.0
8   2019-11-06 00:51:14+00:00  71      216013  180.0
9   2019-12-01 00:51:14+00:00  92      114430   19.0
10  2019-12-01 00:51:14+00:00  92      114431   39.0
11  2019-12-01 00:51:14+00:00  92      114432   59.0
12  2019-12-01 00:51:14+00:00  92      114433   79.0
13  2019-12-01 00:51:14+00:00  92      114434  100.0

Ini adalah kasus yang menarik dari "satu langkah maju, satu langkah mundur". Anda benar bahwa mergesecara signifikan lebih cepat daripada reindex, tetapi ternyata explodesangat lambat pada set data yang lebih besar. Saat menggabungkan penggabungan Anda dengan konstruksi asli dari dataset yang diperluas, kami mendapatkan implementasi tercepat sejauh ini (lihat pembaruan 9/12/2019 untuk pertanyaan)
MBrizzle

1
@ MBrizzle Juga, saya harus mencatat bahwa menambahkan param copy=Falseke penggabungan harus mempercepat sedikit dan Anda akan menghindari penyalinan data yang tidak perlu. merge = expanded.merge(df, on=['start_time', 'id', 'sequence_no'], how='left', copy=False)
Yo_Chris

3

Versi mergesolusi yang lebih pendek :

df.groupby(['start_time', 'id'])['sequence_no']\
.apply(lambda x: np.arange(x.min(), x.max() + 1))\
.explode().reset_index()\
.merge(df, on=['start_time', 'id', 'sequence_no'], how='left')\
.interpolate()

Keluaran:

                   start_time  id sequence_no  value
0   2018-10-17 20:12:43+00:00  71      114428    3.0
1   2018-10-17 20:12:43+00:00  71      114429    3.0
2   2018-10-17 20:12:43+00:00  71      114430   41.0
3   2018-10-17 20:12:43+00:00  71      114431   79.0
4   2019-11-06 00:51:14+00:00  71      216009  100.0
5   2019-11-06 00:51:14+00:00  71      216010  125.0
6   2019-11-06 00:51:14+00:00  71      216011  150.0
7   2019-11-06 00:51:14+00:00  71      216012  165.0
8   2019-11-06 00:51:14+00:00  71      216013  180.0
9   2019-12-01 00:51:14+00:00  92      114430   19.0
10  2019-12-01 00:51:14+00:00  92      114431   39.0
11  2019-12-01 00:51:14+00:00  92      114432   59.0
12  2019-12-01 00:51:14+00:00  92      114433   79.0
13  2019-12-01 00:51:14+00:00  92      114434  100.0

1

Solusi lain dengan reindextanpa menggunakan explode:

result = (df.groupby(["id","start_time"])
          .apply(lambda d: d.set_index("sequence_no")
          .reindex(range(min(d["sequence_no"]),max(d["sequence_no"])+1)))
          .drop(["id","start_time"],axis=1).reset_index()
          .interpolate())

print (result)

#
    id                 start_time  sequence_no  value
0   71  2018-10-17 20:12:43+00:00       114428    3.0
1   71  2018-10-17 20:12:43+00:00       114429    3.0
2   71  2018-10-17 20:12:43+00:00       114430   41.0
3   71  2018-10-17 20:12:43+00:00       114431   79.0
4   71  2019-11-06 00:51:14+00:00       216009  100.0
5   71  2019-11-06 00:51:14+00:00       216010  125.0
6   71  2019-11-06 00:51:14+00:00       216011  150.0
7   71  2019-11-06 00:51:14+00:00       216012  165.0
8   71  2019-11-06 00:51:14+00:00       216013  180.0
9   92  2019-12-01 00:51:14+00:00       114430   19.0
10  92  2019-12-01 00:51:14+00:00       114431   39.0
11  92  2019-12-01 00:51:14+00:00       114432   59.0
12  92  2019-12-01 00:51:14+00:00       114433   79.0
13  92  2019-12-01 00:51:14+00:00       114434  100.0
Dengan menggunakan situs kami, Anda mengakui telah membaca dan memahami Kebijakan Cookie dan Kebijakan Privasi kami.
Licensed under cc by-sa 3.0 with attribution required.