Jawaban di atas menunjukkan bagaimana ukuran blok dapat memengaruhi kinerja dan menyarankan heuristik umum untuk pilihannya berdasarkan maksimalisasi hunian. Tanpa ingin memberikan yang kriteria untuk memilih ukuran blok, itu akan menjadi layak disebut bahwa CUDA 6.5 (sekarang dalam rilis versi Candidate) meliputi beberapa fungsi runtime baru untuk membantu dalam perhitungan hunian dan konfigurasi peluncuran, lihat
Tip CUDA Pro: Occupancy API Menyederhanakan Konfigurasi Peluncuran
Salah satu fungsi yang berguna adalah cudaOccupancyMaxPotentialBlockSize
yang secara heuristik menghitung ukuran blok yang mencapai hunian maksimum. Nilai-nilai yang disediakan oleh fungsi tersebut kemudian dapat digunakan sebagai titik awal pengoptimalan manual parameter peluncuran. Di bawah ini adalah contoh kecil.
#include <stdio.h>
/************************/
/* TEST KERNEL FUNCTION */
/************************/
__global__ void MyKernel(int *a, int *b, int *c, int N)
{
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < N) { c[idx] = a[idx] + b[idx]; }
}
/********/
/* MAIN */
/********/
void main()
{
const int N = 1000000;
int blockSize; // The launch configurator returned block size
int minGridSize; // The minimum grid size needed to achieve the maximum occupancy for a full device launch
int gridSize; // The actual grid size needed, based on input size
int* h_vec1 = (int*) malloc(N*sizeof(int));
int* h_vec2 = (int*) malloc(N*sizeof(int));
int* h_vec3 = (int*) malloc(N*sizeof(int));
int* h_vec4 = (int*) malloc(N*sizeof(int));
int* d_vec1; cudaMalloc((void**)&d_vec1, N*sizeof(int));
int* d_vec2; cudaMalloc((void**)&d_vec2, N*sizeof(int));
int* d_vec3; cudaMalloc((void**)&d_vec3, N*sizeof(int));
for (int i=0; i<N; i++) {
h_vec1[i] = 10;
h_vec2[i] = 20;
h_vec4[i] = h_vec1[i] + h_vec2[i];
}
cudaMemcpy(d_vec1, h_vec1, N*sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(d_vec2, h_vec2, N*sizeof(int), cudaMemcpyHostToDevice);
float time;
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);
cudaOccupancyMaxPotentialBlockSize(&minGridSize, &blockSize, MyKernel, 0, N);
// Round up according to array size
gridSize = (N + blockSize - 1) / blockSize;
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
printf("Occupancy calculator elapsed time: %3.3f ms \n", time);
cudaEventRecord(start, 0);
MyKernel<<<gridSize, blockSize>>>(d_vec1, d_vec2, d_vec3, N);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
printf("Kernel elapsed time: %3.3f ms \n", time);
printf("Blocksize %i\n", blockSize);
cudaMemcpy(h_vec3, d_vec3, N*sizeof(int), cudaMemcpyDeviceToHost);
for (int i=0; i<N; i++) {
if (h_vec3[i] != h_vec4[i]) { printf("Error at i = %i! Host = %i; Device = %i\n", i, h_vec4[i], h_vec3[i]); return; };
}
printf("Test passed\n");
}
EDIT
The cudaOccupancyMaxPotentialBlockSize
didefinisikan dalam cuda_runtime.h
berkas dan didefinisikan sebagai berikut:
template<class T>
__inline__ __host__ CUDART_DEVICE cudaError_t cudaOccupancyMaxPotentialBlockSize(
int *minGridSize,
int *blockSize,
T func,
size_t dynamicSMemSize = 0,
int blockSizeLimit = 0)
{
return cudaOccupancyMaxPotentialBlockSizeVariableSMem(minGridSize, blockSize, func, __cudaOccupancyB2DHelper(dynamicSMemSize), blockSizeLimit);
}
Arti dari parameter adalah sebagai berikut
minGridSize = Suggested min grid size to achieve a full machine launch.
blockSize = Suggested block size to achieve maximum occupancy.
func = Kernel function.
dynamicSMemSize = Size of dynamically allocated shared memory. Of course, it is known at runtime before any kernel launch. The size of the statically allocated shared memory is not needed as it is inferred by the properties of func.
blockSizeLimit = Maximum size for each block. In the case of 1D kernels, it can coincide with the number of input elements.
Perhatikan bahwa, pada CUDA 6.5, seseorang perlu menghitung dimensi blok 2D / 3D miliknya sendiri dari ukuran blok 1D yang disarankan oleh API.
Perhatikan juga bahwa CUDA driver API berisi API yang memiliki fungsi setara untuk penghitungan okupansi, sehingga memungkinkan untuk digunakan cuOccupancyMaxPotentialBlockSize
dalam kode API driver dengan cara yang sama seperti yang ditunjukkan untuk API runtime pada contoh di atas.