HsayaHf
Hsaya= ( 100- 1)
Hhal= ( - 100- 0,1)
Vektor eigen dengan nilai eigen terendah (yaitu keadaan dasar) dari Hsaya adalah | 1⟩jadi kita mulai dalam kondisi ini. Keadaan dasar dariHf adalah | 0⟩ jadi ini yang kita cari.
Ingat runtime minimum untuk AQC untuk memberikan jawaban yang benar dalam suatu kesalahan ϵ:
τ≥ makst( | | Hsaya- Hf| |2ϵ Eg a p( t )3).
Ini diberikan dan dijelaskan dalam Persamaan. 2 dari Tanburn et al. (2015) .
- Katakanlah kita mau ϵ=0.1.
- Notice that ||Hi−Hf||2=0.1 according Eq. 4 of the same paper.
- Notice that ||Hi−Hf||2ϵ=1 (I've chosen ϵ so that this would happen, but it doesn't matter).
- We now have τ≥maxt(1Egap(t)3)
So what is the minimum gap between ground and first excited state (which gives the maxt) ?
When t=20τ/29, the Hamiltonian is:
H=929Hi+2029Hp
H=929(100−1)+2029(−100−0.1)
H=(92900−929)+(−202900−229)
H=(−112900−1129)
So when t=2029τ, we have Egap=0 and the lower bound on τ is essentially ∞.
So the adiabatic theorem still applies, but when it states that the Hamiltonian needs to change "slowly enough", it turns out it needs to change "infinitely slowly", which means you will not likely ever get the answer using AQC.