Kasus I: 2 qubit tidak terjerat.
Anda dapat menulis status dari dua qubit (katakanlah dan B ) sebagai | ψ A ⟩ = a | 0 ⟩ + b | 1 ⟩ dan | ψ B ⟩ = c | 0 ⟩ + d | 1 ⟩ mana sebuah , b , c , d ∈ C .AB|ψA⟩=a|0⟩+b|1⟩|ψB⟩=c|0⟩+d|1⟩a,b,c,d∈C
Qubit individu berada dalam ruang vektor kompleks dua dimensi (di atas bidang C ). Tapi keadaan sistem adalah vektor (atau titik ) yang berada di empat dimensi ruang vektor kompleks C 4 (lebih dari C lapangan).C2CC4C
Keadaan sistem dapat ditulis sebagai produk tensor yaitu sebuah c | 00 ⟩ + a d | 01 ⟩ + b c | 10 ⟩ + b d | 11 ⟩ .|ψA⟩⊗|ψB⟩ac|00⟩+ad|01⟩+bc|10⟩+bd|11⟩
Secara alami, karena vektor keadaan harus dinormalisasi. Alasan mengapa kuadrat amplitudo keadaan dasar memberikan probabilitas keadaan dasar itu terjadi ketika diukur dalam basis yang sesuai terletak pada aturan Born of mekanika kuantum (beberapa fisikawan menganggapnya sebagai postulat dasar mekanika kuantum) . Sekarang, probabilitas | 0 ⟩ occuring ketika qubit pertama diukur adalah|ac|2+|ad|2+|bc|2+|bd|2=1|0⟩ . Demikian pula, probabilitas | 1 ⟩ occuring ketika qubit pertama diukur adalah | b c | 2 + | b d | 2 .|ac|2+|ad|2|1⟩|bc|2+|bd|2
Sekarang, apa yang terjadi jika kita menerapkan gerbang kuantum tanpa melakukan pengukuran apa pun pada kondisi sistem sebelumnya? Gerbang kuantum adalah gerbang kesatuan. Aksi mereka dapat ditulis sebagai tindakan operator kesatuan pada keadaan awal sistem yaitu suatu c | 00 ⟩ + a d | 01 ⟩ + b c | 10 ⟩ + b d | 11 ⟩ untuk menghasilkan negara baru A | 00 ⟩ + B | 01 ⟩ + C | 10 ⟩Uac|00⟩+ad|01⟩+bc|10⟩+bd|11⟩A|00⟩+B|01⟩+C|10⟩+D|11⟩ (where A,B,C,D∈C). The magnitude of this new state vector: |A|2+|B|2+|C|2+|D|2 again equates to 1, since the applied gate was unitary. When the first qubit is measured, probability of |0⟩ occurring is |A|2+|B|2 and similarly you can find it for occurrence of |1⟩.
But if we did perform a measurement, before the action of the unitary gate the result would be different. For example of you had measured the first qubit and it turned out to be in |0⟩ state the intermediate state of the system would have collapsed to ac|00⟩+ad|01⟩(ac)2+(ad)2√ (according to the Copenhagen interpretation). So you can understand that applying the same quantum gate on this state would have given a different final result.
Case II: The 2 qubits are entangled.
In case the state of the system is something like 12√|00⟩+12√|11⟩ , you cannot represent it as a tensor product of states of two individual qubits (try!). There are plenty more such examples. The qubits are said to entangled in such a case.
Anyway, the basic logic still remains same. The probability of |0⟩ occuring when the first qubit is measured is |1/2–√|2=12 and |1⟩ occuring is 12 too. Similarly you can find out the probabilities for measurement of the second qubit.
Again if you apply a unitary quantum gate on this state, you'd end up with something like A|00⟩+B|01⟩+C|10⟩+D|11⟩, as before. I hope you can now yourself find out the probabilities of the different possibilities when the first and second qubits are measured.
Note: Normally the basis states of the 2-qubit sytem |00⟩,|01⟩,|10⟩,|11⟩ are considered as the four 4×1 column vectors like ⎡⎣⎢⎢⎢1000⎤⎦⎥⎥⎥, ⎡⎣⎢⎢⎢0100⎤⎦⎥⎥⎥, etc. by mapping the four basis vectors to the standard basis of R4. And, the unitary transformations U can be written as 4×4 matrices which satisfy the property UU†=U†U=I.