Secara teori Anda memang dapat menggunakan kembali CSR yang sama, karena ini hanyalah wadah untuk
- Kunci Publik Anda (hanya Angka yang digunakan untuk enkripsi RSA (matematika khusus))
- detail "Subjek" Anda (siapa Anda, domain apa, dll ...) Teks yang digunakan untuk Mengidentifikasi pemilik Kunci Publik itu
Lagipula inilah sertifikat (kependekan dari PublicKey Certificate)
Tetapi seperti dicatat dalam jawaban lain, itu adalah praktik yang baik untuk mengubah kunci pribadi secara teratur, sehingga menyiratkan Sertifikat baru, dan CSR baru untuk mendapatkannya.
Anda dapat dengan mudah melihat isi CSR
misalnya
$ openssl req -new -batch -subj "/CN=My Common Name/OU=My Org Unit/O=My Organisation" -sha256 -newkey rsa:2048 -keyout private.key -nodes -out request.csr
Generating a 2048 bit RSA private key
.............................................................................................+++++
.........+++++
writing new private key to 'private.key'
-----
$ ls
private.key // keep that private, the PublicKey side is easily be generated from this
request.csr // your PublicKey + Subject details
CSR
$ openssl req -in request.csr -text -noout
Certificate Request:
Data:
Version: 1 (0x0)
Subject: CN = My Common Name, OU = My Org Unit, O = My Organisation
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public-Key: (2048 bit)
Modulus: ///////// Matches the PrivateKey modulus
00:b1:e8:de:e6:bf:21:45:51:75:15:23:5e:6e:7a:
7d:95:53:e5:d5:ec:5b:38:cd:7f:38:2d:53:8a:54:
...
fe:b5:78:de:9b:c1:ee:c1:51:6f:fd:fb:0e:62:09:
03:87
Exponent: 65537 (0x10001) ///////// Matches the PrivateKey publicExponent
Attributes:
a0:00
Signature Algorithm: sha256WithRSAEncryption
a1:44:1f:b2:ec:c0:82:bc:99:da:69:ce:3e:77:9f:46:51:95:
...
3b:2d:84:e3:73:ac:be:c8:da:29:fd:62:90:11:dd:8a:a6:4f:
7b:f8:ac:f1
Dan PrivateKey
$ openssl rsa -in private.key -text -noout
// all the below are numbers that takes part in Mathematical encryption (search for RSA maths)
RSA Private-Key: (2048 bit, 2 primes)
// The Numbers that can be freely published
modulus:
00:b1:e8:de:e6:bf:21:45:51:75:15:23:5e:6e:7a:
7d:95:53:e5:d5:ec:5b:38:cd:7f:38:2d:53:8a:54:
...
fe:b5:78:de:9b:c1:ee:c1:51:6f:fd:fb:0e:62:09:
03:87
publicExponent: 65537 (0x10001)
// The Numbers that must be kept private !
privateExponent:
0a:81:73:d8:30:65:28:90:bc:d7:38:b5:74:d4:aa:
...
b1:9b:30:2e:a2:dd:46:c1:10:0f:b0:da:ac:b6:ea:
01
prime1:
00:e0:28:01:87:95:70:d0:b8:21:07:e0:4f:96:a6:
...
66:28:8f:3d:d7:eb:e6:b4:81
prime2:
00:cb:2e:fe:1b:b6:30:ea:8d:9e:6d:23:83:d8:b6:
...
4d:64:39:5c:9c:18:a0:14:07
exponent1:
22:e2:36:f2:b9:af:f7:db:5f:d0:90:f8:f1:d1:ff:
...
3a:31:a8:87:2c:c0:17:81
exponent2:
5a:8b:3d:77:f1:ef:c8:86:85:a4:13:20:8d:31:a4:
...
a5:ba:1e:37:fd:8d:50:7f
coefficient:
00:d3:d3:b6:81:4b:a9:c2:aa:ff:e1:07:cb:de:ea:
...
5c:e9:3b:d3:f7:67:82:c3:7f