Masalah jumlah subset adalah NP-complete?


8

Jika saya tahu benar, masalah jumlah subset adalah NP-complete. Di sini Anda memiliki array n bilangan bulat dan Anda diberi jumlah target t, Anda harus mengembalikan angka dari array yang dapat menjumlahkan hingga target (jika mungkin).

Tapi tidak bisakah masalah ini diselesaikan dalam waktu polinomial dengan metode pemrograman dinamis di mana kita membangun sebuah tabel n X t dan mengambil kasus-kasus seperti mengatakan angka terakhir pasti termasuk dalam output dan kemudian target menjadi t-a [n]. Dalam kasus lain, angka terakhir tidak termasuk, maka target tetap sama tetapi array menjadi ukuran n-1. Karena itu dengan cara ini kami terus mengurangi ukuran masalah.

Jika pendekatan ini benar, bukankah kerumitan n * t ini, yang jumlahnya banyak? dan jadi jika ini milik P dan juga NP-complete (dari apa yang saya dengar) maka P = NP.

Tentunya, saya kehilangan sesuatu di sini. Di mana celah dalam alasan ini?

Terima kasih,


1
Crossposted dari Math.SE .
Peter Taylor

3
Ini pertanyaan yang bagus, tapi ini bukan tempat untuk pertanyaan seperti itu.
Frank Shearar

Jawaban:


12

Logika Anda benar - dan apa yang Anda uraikan adalah algoritma subset-sum yang valid yang menyelesaikannya O(nt).

Namun, jenis algoritma ini adalah pseudopolinomial , yang berarti bahwa itu eksponensial dengan jumlah bit yang digunakan untuk mewakili input. Artinya, jika Anda tadalah 1000, maka saya dapat membuat program Anda 10 kali lebih lambat dengan menambahkan 0 lainnya ( tsekarang 10.000).

Jadi sementara algoritma adalah polinomial dengan nilai dari ndan t, itu adalah eksponensial dengan ukuran dari input (jumlah karakter, bit, apa pun yang Anda ingin memanggil mereka, di input).

Dan karenanya, masalah ini bukan di P (kecuali P = NP atau yang serupa).

Sumber dan bacaan lebih lanjut

Dengan menggunakan situs kami, Anda mengakui telah membaca dan memahami Kebijakan Cookie dan Kebijakan Privasi kami.
Licensed under cc by-sa 3.0 with attribution required.