Bagaimana saya bisa mendapatkan efek acak dikumpulkan untuk lmer setelah beberapa kali imputasi?
Saya menggunakan mouse untuk menghubungkan beberapa frame data. Dan lme4 untuk model campuran dengan intersep acak dan kemiringan acak. Pooling lmer baik-baik saja, kecuali bahwa itu tidak mengumpulkan efek acak. Saya telah mencari banyak solusi tanpa keberuntungan. Saya mencoba paket mi, namun saya hanya melihat output gabungan untuk perkiraan dan std.error. Saya sudah mencoba mengekspor objek tikus ke spss tanpa hasil. Saya melihat beberapa diskusi tentang Zelig. Saya pikir itu bisa menyelesaikan masalah saya. Namun saya tidak dapat menemukan cara menggunakan paket dengan data yang diperhitungkan untuk lmer.
Saya tahu paket mouse hanya mendukung penyatuan efek tetap. Apakah ada pekerjaan?
Beberapa imputasi:
library(mice)
Data <- subset(Data0, select=c(id, faculty, gender, age, age_sqr, occupation, degree, private_sector, overtime, wage))
ini <- mice(Data, maxit=0, pri=F) #get predictor matrix
pred <- ini$pred
pred[,"id"] <- 0 #don't use id as predictor
meth <- ini$meth
meth[c("id", "faculty", "gender", "age", "age_sqr", "occupation", "degree", "private_sector", "overtime", "wage")] <- "" #don't impute these variables, use only as predictors.
imp <- mice(Data, m=22, maxit=10, printFlag=TRUE, pred=pred, meth=meth) #impute Data with 22 imputations and 10 iterations.
Model bertingkat:
library(lme4)
fm1 <- with(imp, lmer(log(wage) ~ gender + age + age_sqr + occupation + degree + private_sector + overtime + (1+gender|faculty))) #my multilevel model
summary(est <- pool(fm1)) #pool my results
Perbarui Hasil dari pooled lmer:
> summary(est <- pool(fm1))
est se t df Pr(>|t|) lo 95 hi 95 nmis fmi lambda
(Intercept) 7,635148e+00 0,1749178710 43,649905006 212,5553 0,000000e+00 7,2903525425 7,9799443672 NA 0,2632782 0,2563786
Gender -1,094186e-01 0,0286629154 -3,817427078 117,1059 2,171066e-04 -0,1661834550 -0,0526537238 NA 0,3846276 0,3742069
Occupation1 1,125022e-01 0,0250082538 4,498601518 157,6557 1,320753e-05 0,0631077322 0,1618966049 NA 0,3207350 0,3121722
Occupation2 2,753089e-02 0,0176032487 1,563966385 215,6197 1,192919e-01 -0,0071655902 0,0622273689 NA 0,2606725 0,2538465
Occupation3 1,881908e-04 0,0221992053 0,008477365 235,3705 9,932433e-01 -0,0435463305 0,0439227120 NA 0,2449795 0,2385910
Age 1,131147e-02 0,0087366178 1,294719230 187,0021 1,970135e-01 -0,0059235288 0,0285464629 0 0,2871640 0,2795807
Age_sqr -7,790476e-05 0,0001033263 -0,753968159 185,4630 4,518245e-01 -0,0002817508 0,0001259413 0 0,2887420 0,2811131
Overtime -2,376501e-03 0,0004065466 -5,845581504 243,3563 1,614693e-08 -0,0031773002 -0,0015757019 9 0,2391179 0,2328903
Private_sector 8,322438e-02 0,0203047665 4,098760934 371,9971 5,102752e-05 0,0432978716 0,1231508962 NA 0,1688478 0,1643912
Informasi ini tidak ada, yang saya dapatkan ketika menjalankan lmer tanpa banyak imputasi:
Random effects:
Groups Name Variance Std.Dev. Corr
Faculty (Intercept) 0,008383 0,09156
Genderfemale0,002240 0,04732 1,00
Residual 0,041845 0,20456
Number of obs: 698, groups: Faculty, 17