Saya mencoba untuk menyetel hyperparameter dari algoritma regresi proses gaussian yang telah saya terapkan. Saya hanya ingin memaksimalkan kemungkinan marginal log yang diberikan oleh rumus mana K adalah matriks kovarians dengan elemen K_ {ij} = k (x_i, x_j) = b ^ {- 1} \ exp (- \ frac {1} {2} (x_i-x_j) ^ TM (x_i-x_j)) + a ^ {- 1 } \ delta_ {ij} di mana M = lI dan a, b dan l adalah hyperparameters.
turunan sebagian dari parameter kemungkinan log marginal diberikan oleh
Sebagai entri dari bergantung pada parameter, begitu derivatif dan kebalikan dari . Ini berarti, ketika optimizer berbasis gradien digunakan, mengevaluasi gradien pada titik tertentu (nilai parameter) akan memerlukan perhitungan ulang dari matriks kovarians. Dalam aplikasi saya, ini tidak layak karena menghitung matriks kovarians dari awal dan menghitung kebalikannya dalam setiap iterasi kenaikan gradien terlalu mahal. Pertanyaan saya adalah apa pilihan saya untuk menemukan kombinasi yang cukup bagus dari ketiga parameter ini? dan saya juga tidak tahu parameter mana yang harus dioptimalkan terlebih dahulu dan saya akan menghargai petunjuk tentang masalah ini juga.