Saya memasang beberapa model aditif umum menggunakan mgcv
paket dalam R, dan saya ingin menguji antara dua model; apakah saya dapat menghapus istilah atau tidak. Namun, saya mendapatkan hasil yang bertentangan (sejauh yang saya tahu).
Model, m1
dengan istilah yang halus untuk x
ditambahkan, nampaknya memberikan kesesuaian yang lebih baik dalam hal , AIC, deviance dijelaskan, dan ketika membandingkan model menggunakan uji-F. Namun, signifikansi istilah halus tidak signifikan (juga tidak ketika saya ditambahkan ke model sebagai kovariat linier, bukan spline).
Apakah interpretasi saya terhadap tes istilah lancar benar? Sejauh yang saya bisa mengerti halaman bantuan, adalah bahwa tes tersebut adalah perkiraan, tetapi ada perbedaan yang cukup besar di sini.
Output model
m1 <- gam(out ~ s(x) + s(y) + s(z), data=dat)
> summary(m1)
#
# Family: gaussian
# Link function: identity
#
# Formula:
# out ~ s(x) + s(y) + s(z)
#
# Parametric coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -7.502e-16 1.209e-01 0 1
#
# Approximate significance of smooth terms:
# edf Ref.df F p-value
# s(x) 4.005 4.716 1.810 0.136
# s(y) 8.799 8.951 4.032 4.01e-05 ***
# s(z) 7.612 8.526 5.649 4.83e-07 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# R-sq.(adj) = 0.213 Deviance explained = 24.8%
# GCV = 6.9741 Scale est. = 6.6459 n = 455
> AIC(m1)
#[1] 2175.898
> m2 <- gam(out ~ s(y) + s(z), data=dat)
> summary(m2)
#
# Family: gaussian
# Link function: identity
#
# Formula:
# out ~ s(y) + s(z)
#
# Parametric coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 1.705e-15 1.228e-01 0 1
#
# Approximate significance of smooth terms:
# edf Ref.df F p-value
# s(y) 8.726 8.968 5.137 6.78e-07 ***
# s(z) 8.110 8.793 5.827 1.55e-07 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# R-sq.(adj) = 0.187 Deviance explained = 21.7%
# GCV = 7.144 Scale est. = 6.8639 n = 455
> AIC(m2)
#[1] 2187.168
> anova(m1, m2, test="F")
# Analysis of Deviance Table
#
# Model 1: out ~ s(x) + s(y) + s(z)
# Model 2: out ~ s(y) + s(z)
# Resid. Df Resid. Dev Df Deviance F Pr(>F)
# 1 433.58 2881.6
# 2 437.16 3000.7 -3.5791 -119.1 5.0073 0.0009864 ***
EDIT : menambahkan model dari komentar
> summary(m3 <- gam(out ~ s(x) + s(y) + s(z), data=dat, select=TRUE))
#Family: gaussian
#Link function: identity
#Formula:
#out ~ s(x) + s(y) + s(z)
#Parametric coefficients:
# Estimate Std. Error t value Pr(>|t|)
#(Intercept) -1.588e-14 1.209e-01 0 1
#Approximate significance of smooth terms:
# edf Ref.df F p-value
#s(x) 4.424 9 1.750 0.00161 **
#s(y) 8.260 9 3.623 5.56e-06 ***
#s(z) 7.150 9 5.329 4.19e-09 ***
#---
#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#R-sq.(adj) = 0.212 Deviance explained = 24.7%
#GCV = 6.9694 Scale est. = 6.6502 n = 455
select
, tetapi saya bahkan lebih tidak yakin bagaimana menafsirkan ini. Ini menghasilkan model dengan statistik pas hampir sama (sedikit lebih buruk ) dalam hal r2, aic dll tetapi nilai p untuk istilah s (x) sekarang jauh lebih rendah. Jadi, jika parameter tidak menyusut, apa yang berubah.
select = TRUE
?
mgcv::gam
tidak dihukum regresi. Mengaturselect = TRUE
dan kemudian istilah dapat dihapus dari model selama pemasangan. Namun, jika sasaran Anda adalah prediksi, saya akan merekomendasikan menggunakan pelatihan independen dan menguji kumpulan data atau setidaknya validasi silang.