Catatan: Saya memposting pertanyaan dari mantan mahasiswa saya yang tidak dapat memposting sendiri karena alasan teknis.
Diberikan sampel iid dari distribusi Weibull dengan pdf
Catatan: Saya memposting pertanyaan dari mantan mahasiswa saya yang tidak dapat memposting sendiri karena alasan teknis.
Diberikan sampel iid dari distribusi Weibull dengan pdf
Jawaban:
Saya pikir jawabannya adalah ya, jika saya telah memahami pertanyaan dengan benar.
Tulis . Kemudian EM jenis algoritma iterasi, dimulai dengan misalnya k = 1 , adalah
E
M
Ini adalah kasus khusus (kasus tanpa sensor dan tanpa kovariat) dari iterasi yang disarankan untuk model bahaya proporsional Weibull oleh Aitkin dan Clayton (1980). Itu juga dapat ditemukan di Bagian 6.11 dari Aitkin et al (1989).
Aitkin, M. dan Clayton, D., 1980. Pemasangan distribusi nilai eksponensial, Weibull dan ekstrim untuk data survival yang disensor kompleks menggunakan GLIM. Statistik Terapan , hal.156-163.
Aitkin, M., Anderson, D., Francis, B. dan Hinde, J., 1989. Pemodelan Statistik dalam GLIM . Oxford University Press. New York.
The Weibull MLE hanya numerik dipecahkan:
Biarkan dengan
1) Likelihoodfunction :
log-Likelihoodfunction :
2) MLE-Masalah : 3) Maksimalisasidengan0-gradien: ∂ l
Plugging into the second 0-gradient condition:
This equation is only numerically solvable, e.g. Newton-Raphson algorithm. can then be placed into to complete the ML estimator for the Weibull distribution.
Though this is an old question, it looks like there is an answer in a paper published here: http://home.iitk.ac.in/~kundu/interval-censoring-REVISED-2.pdf
In this work the analysis of interval-censored data, with Weibull distribution as the underlying lifetime distribution has been considered. It is assumed that censoring mechanism is independent and non-informative. As expected, the maximum likelihood estimators cannot be obtained in closed form. In our simulation experiments it is observed that the Newton-Raphson method may not converge many times. An expectation maximization algorithm has been suggested to compute the maximum likelihood estimators, and it converges almost all the times.
In this case the MLE and EM estimators are equivalent, since the MLE estimator is actually just a special case of the EM estimator. (I am assuming a frequentist framework in my answer; this isn't true for EM in a Bayesian context in which we're talking about MAP's). Since there is no missing data (just an unknown parameter), the E step simply returns the log likelihood, regardless of your choice of . The M step then maximizes the log likelihood, yielding the MLE.
EM would be applicable, for example, if you had observed data from a mixture of two Weibull distributions with parameters and , but you didn't know which of these two distributions each observation came from.