Kami memiliki kumpulan data dengan dua kovariat dan variabel pengelompokan kategoris dan ingin tahu apakah ada perbedaan yang signifikan antara kemiringan atau intersep di antara kovariat yang terkait dengan variabel pengelompokan yang berbeda. Kami telah menggunakan anova () dan lm () untuk membandingkan kecocokan dari tiga model yang berbeda: 1) dengan kemiringan tunggal dan intersep, 2) dengan intersep yang berbeda untuk setiap grup, dan 3) dengan kemiringan dan intersep untuk setiap kelompok . Menurut anova () tes linier umum, model kedua adalah yang paling tepat dari ketiganya, ada peningkatan yang signifikan untuk model dengan memasukkan intersep terpisah untuk masing-masing kelompok. Namun, ketika kita melihat interval kepercayaan 95% untuk intersep ini - semuanya tumpang tindih, menunjukkan tidak ada perbedaan yang signifikan antara intersep. Bagaimana kedua hasil ini dapat direkonsiliasi? Kami pikir cara lain untuk menginterpretasikan hasil dari metode pemilihan model adalah bahwa harus ada setidaknya satu perbedaan signifikan di antara penyadapan ... tapi mungkin ini tidak benar?
Di bawah ini adalah kode R untuk mereplikasi analisis ini. Kami telah menggunakan fungsi dput () sehingga Anda dapat bekerja dengan data yang persis sama dengan yang kami garap.
# Begin R Script
# > dput(data)
structure(list(Head = c(1.92, 1.93, 1.79, 1.94, 1.91, 1.88, 1.91,
1.9, 1.97, 1.97, 1.95, 1.93, 1.95, 2, 1.87, 1.88, 1.97, 1.88,
1.89, 1.86, 1.86, 1.97, 2.02, 2.04, 1.9, 1.83, 1.95, 1.87, 1.93,
1.94, 1.91, 1.96, 1.89, 1.87, 1.95, 1.86, 2.03, 1.88, 1.98, 1.97,
1.86, 2.04, 1.86, 1.92, 1.98, 1.86, 1.83, 1.93, 1.9, 1.97, 1.92,
2.04, 1.92, 1.9, 1.93, 1.96, 1.91, 2.01, 1.97, 1.96, 1.76, 1.84,
1.92, 1.96, 1.87, 2.1, 2.17, 2.1, 2.11, 2.17, 2.12, 2.06, 2.06,
2.1, 2.05, 2.07, 2.2, 2.14, 2.02, 2.08, 2.16, 2.11, 2.29, 2.08,
2.04, 2.12, 2.02, 2.22, 2.22, 2.2, 2.26, 2.15, 2, 2.24, 2.18,
2.07, 2.06, 2.18, 2.14, 2.13, 2.2, 2.1, 2.13, 2.15, 2.25, 2.14,
2.07, 1.98, 2.16, 2.11, 2.21, 2.18, 2.13, 2.06, 2.21, 2.08, 1.88,
1.81, 1.87, 1.88, 1.87, 1.79, 1.99, 1.87, 1.95, 1.91, 1.99, 1.85,
2.03, 1.88, 1.88, 1.87, 1.85, 1.94, 1.98, 2.01, 1.82, 1.85, 1.75,
1.95, 1.92, 1.91, 1.98, 1.92, 1.96, 1.9, 1.86, 1.97, 2.06, 1.86,
1.91, 2.01, 1.73, 1.97, 1.94, 1.81, 1.86, 1.99, 1.96, 1.94, 1.85,
1.91, 1.96, 1.9, 1.98, 1.89, 1.88, 1.95, 1.9, 1.94, NA, 1.84,
1.83, 1.84, 1.96, 1.74, 1.91, 1.84, 1.88, 1.83, 1.93, 1.78, 1.88,
1.93, 2.15, 2.16, 2.23, 2.09, 2.36, 2.31, 2.25, 2.29, 2.3, 2.04,
2.22, 2.19, 2.25, 2.31, 2.3, 2.28, 2.25, 2.15, 2.29, 2.24, 2.34,
2.2, 2.24, 2.17, 2.26, 2.18, 2.17, 2.34, 2.23, 2.36, 2.31, 2.13,
2.2, 2.27, 2.27, 2.2, 2.34, 2.12, 2.26, 2.18, 2.31, 2.24, 2.26,
2.15, 2.29, 2.14, 2.25, 2.31, 2.13, 2.09, 2.24, 2.26, 2.26, 2.21,
2.25, 2.29, 2.15, 2.2, 2.18, 2.16, 2.14, 2.26, 2.22, 2.12, 2.12,
2.16, 2.27, 2.17, 2.27, 2.17, 2.3, 2.25, 2.17, 2.27, 2.06, 2.13,
2.11, 2.11, 1.97, 2.09, 2.06, 2.11, 2.09, 2.08, 2.17, 2.12, 2.13,
1.99, 2.08, 2.01, 1.97, 1.97, 2.09, 1.94, 2.06, 2.09, 2.04, 2,
2.14, 2.07, 1.98, 2, 2.19, 2.12, 2.06, 2, 2.02, 2.16, 2.1, 1.97,
1.97, 2.1, 2.02, 1.99, 2.13, 2.05, 2.05, 2.16, 2.02, 2.02, 2.08,
1.98, 2.04, 2.02, 2.07, 2.02, 2.02, 2.02), Site = structure(c(2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L), .Label = c("ANZ", "BC", "DV", "MC",
"RB", "WW"), class = "factor"), Leg = c(2.38, 2.45, 2.22, 2.23,
2.26, 2.32, 2.28, 2.17, 2.39, 2.27, 2.42, 2.33, 2.31, 2.32, 2.25,
2.27, 2.38, 2.28, 2.33, 2.24, 2.21, 2.22, 2.42, 2.23, 2.36, 2.2,
2.28, 2.23, 2.33, 2.35, 2.36, 2.26, 2.26, 2.3, 2.23, 2.31, 2.27,
2.23, 2.37, 2.27, 2.26, 2.3, 2.33, 2.34, 2.27, 2.4, 2.22, 2.25,
2.28, 2.33, 2.26, 2.32, 2.29, 2.31, 2.37, 2.24, 2.26, 2.36, 2.32,
2.32, 2.15, 2.2, 2.29, 2.37, 2.26, 2.24, 2.23, 2.24, 2.26, 2.18,
2.11, 2.23, 2.31, 2.25, 2.15, 2.3, 2.33, 2.35, 2.21, 2.36, 2.27,
2.24, 2.35, 2.24, 2.33, 2.32, 2.24, 2.35, 2.36, 2.39, 2.28, 2.36,
2.19, 2.27, 2.39, 2.23, 2.29, 2.32, 2.3, 2.32, NA, 2.25, 2.24,
2.21, 2.37, 2.21, 2.21, 2.27, 2.27, 2.26, 2.19, 2.2, 2.25, 2.25,
2.25, NA, 2.24, 2.17, 2.2, 2.2, 2.18, 2.14, 2.17, 2.27, 2.28,
2.27, 2.29, 2.23, 2.25, 2.33, 2.22, 2.29, 2.19, 2.15, 2.24, 2.24,
2.26, 2.25, 2.09, 2.27, 2.18, 2.2, 2.25, 2.24, 2.18, 2.3, 2.26,
2.18, 2.27, 2.12, 2.18, 2.33, 2.13, 2.28, 2.23, 2.16, 2.2, 2.3,
2.31, 2.18, 2.33, 2.29, 2.26, 2.21, 2.22, 2.27, 2.32, 2.24, 2.25,
2.17, 2.2, 2.26, 2.27, 2.24, 2.25, 2.09, 2.25, 2.21, 2.24, 2.21,
2.22, 2.13, 2.24, 2.21, 2.3, 2.34, 2.35, 2.32, 2.46, 2.43, 2.42,
2.41, 2.32, 2.25, 2.33, 2.19, 2.45, 2.32, 2.4, 2.38, 2.35, 2.39,
2.29, 2.35, 2.43, 2.29, 2.33, 2.31, 2.28, 2.38, 2.32, 2.43, 2.27,
2.4, 2.37, 2.27, 2.41, 2.32, 2.38, 2.23, 2.33, 2.21, 2.34, 2.19,
2.34, 2.35, 2.35, 2.31, 2.33, 2.41, 2.53, 2.39, 2.17, 2.16, 2.38,
2.34, 2.33, 2.33, 2.29, 2.43, 2.28, 2.34, 2.38, 2.3, 2.29, 2.43,
2.36, 2.24, 2.35, 2.38, 2.4, 2.36, 2.42, 2.28, 2.45, 2.33, 2.32,
2.33, 2.31, 2.44, 2.37, 2.4, 2.35, 2.33, 2.31, 2.36, 2.43, 2.38,
2.4, 2.38, 2.46, 2.33, 2.38, 2.23, 2.24, 2.39, 2.36, 2.19, 2.32,
2.37, 2.39, 2.34, 2.39, 2.23, 2.25, 2.29, 2.39, 2.35, NA, 2.28,
2.35, 2.38, 2.34, 2.17, 2.29, NA, 2.26, NA, NA, NA, 2.24, 2.33,
2.23, 2.28, 2.29, 2.23, 2.2, 2.27, 2.31, 2.31, 2.26, 2.28)), .Names = c("Head",
"Site", "Leg"), class = "data.frame", row.names = c(NA, -312L
))
# plot graph
library(ggplot2)
qplot(Head, Leg,
color=Site,
data=data) +
stat_smooth(method="lm", alpha=0.2) +
theme_bw()
# create linear models
lm.1 <- lm(Leg ~ Head, data)
lm.2 <- lm(Leg ~ Head + Site, data)
lm.3 <- lm(Leg ~ Head*Site, data)
# evaluate linear models
anova(lm.1, lm.2, lm.3)
anova(lm.1, lm.2)
# > anova(lm.1, lm.2)
# Analysis of Variance Table
# Model 1: Leg.3.1 ~ Head.W1
# Model 2: Leg.3.1 ~ Head.W1 + Site
# Res.Df RSS Df Sum of Sq F Pr(>F)
# 1 302 1.25589
# 2 297 0.91332 5 0.34257 22.28 < 2.2e-16 ***
# examining the multiple-intercepts model (lm.2)
summary(lm.2)
coef(lm.2)
confint(lm.2)
# extracting the intercepts
intercepts <- coef(lm.2)[c(1, 3:7)]
intercepts.1 <- intercepts[1]
intercepts <- intercepts.1 + intercepts
intercepts[1] <- intercepts.1
intercepts
# extracting the confidence intervals
ci <- confint(lm.2)[c(1, 3:7),]
ci[2:6,] <- ci[2:6,] + confint(lm.2)[1,]
ci[,1]
# putting everything together in a dataframe
labels <- c("ANZ", "BC", "DV", "MC", "RB", "WW")
ci.dataframe <- data.frame(Site=labels, Intercept=intercepts, CI.low = ci[,1], CI.high = ci[,2])
ci.dataframe
# plotting intercepts and 95% CI
qplot(Site, Intercept, geom=c("point", "errorbar"), ymin=CI.low, ymax=CI.high, data=ci.dataframe, ylab="Intercept & 95% CI")
Singkatnya - masalahnya adalah bahwa 95% CI untuk intersep semuanya tumpang tindih, tetapi metode pemilihan model menunjukkan bahwa model terbaik adalah yang cocok dengan intersep yang berbeda. Jadi saya cenderung berpikir bahwa metode pemilihan model kami cacat atau 95% CI untuk perkiraan intersep dihitung secara tidak benar. Pikiran apa pun akan sangat dihargai!