Ya, itulah interpretasinya. Salah satu cara di mana Anda dapat melihat ini adalah dengan memprediksi median untuk nilai yang berbeda dari standar Anda, masing-masing 1 unit (dalam hal ini standar deviasi) appart. Daripada Anda dapat melihat berapa banyak median yang diprediksi ini berbeda, dan Anda akan melihat bahwa itu adalah angka yang persis sama dengan koefisien regresi kuantil standar Anda. Berikut ini sebuah contoh:
. sysuse auto, clear
(1978 Automobile Data)
.
. // standardize variables
. sum price if !missing(price,weight)
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
price | 74 6165.257 2949.496 3291 15906
. gen double z_price = ( price - r(mean) ) / r(sd)
.
. sum weight if !missing(price,weight)
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
weight | 74 3019.459 777.1936 1760 4840
. gen double z_weight = ( weight - r(mean) ) / r(sd)
.
. // estimate the quartile regression
. qreg z_price z_weight
Iteration 1: WLS sum of weighted deviations = 47.263794
Iteration 1: sum of abs. weighted deviations = 54.018868
Iteration 2: sum of abs. weighted deviations = 43.851751
Median regression Number of obs = 74
Raw sum of deviations 48.21332 (about -.41744651)
Min sum of deviations 43.85175 Pseudo R2 = 0.0905
------------------------------------------------------------------------------
z_price | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
z_weight | .2552875 .1368752 1.87 0.066 -.0175682 .5281432
_cons | -.3415908 .1359472 -2.51 0.014 -.6125966 -.070585
------------------------------------------------------------------------------
.
. // predict the predicted median for z_weight
. // is -2, -1, 0, 1, 2
. drop _all
. set obs 5
obs was 0, now 5
. gen z_weight = _n - 3
. predict med
(option xb assumed; fitted values)
. list
+----------------------+
| z_weight med |
|----------------------|
1. | -2 -.8521658 |
2. | -1 -.5968783 |
3. | 0 -.3415908 |
4. | 1 -.0863033 |
5. | 2 .1689841 |
+----------------------+
.
. // compute how much the predicted median
. // differs between cars 1 standard deviation
. // weight apart
. gen diff = med - med[_n - 1]
(1 missing value generated)
. list
+---------------------------------+
| z_weight med diff |
|---------------------------------|
1. | -2 -.8521658 . |
2. | -1 -.5968783 .2552875 |
3. | 0 -.3415908 .2552875 |
4. | 1 -.0863033 .2552875 |
5. | 2 .1689841 .2552875 |
+---------------------------------+