Jawaban:
Itu tidak mungkin.
Pertimbangkan urutan dari variabel acak, di mana
Kemudian:
Tapi mendekati nol ketikamenuju tak terhingga:
Contoh ini menggunakan fakta bahwa tidak berubah di bawah terjemahan , tetapi tidak.
Tetapi bahkan jika kita asumsikan , kita tidak bisa menghitung : Biarkan
dan
Kemudian mendekati 1 ketika n menuju infinity, tetapi V a r ( 1untuk semuan.
Anda bisa menggunakan deret Taylor untuk mendapatkan perkiraan momen orde rendah dari variabel acak yang ditransformasikan. Jika distribusi cukup 'ketat' di sekitar rata-rata (dalam arti tertentu), perkiraannya bisa sangat bagus.
Jadi misalnya
begitu
often only the first term is taken
In this case (assuming I didn't make a mistake), with , .
Wikipedia: Taylor expansions for the moments of functions of random variables
---
Some examples to illustrate this. I'll generate two (gamma-distributed) samples in R, one with a 'not-so-tight' distribution about the mean and one a bit tighter.
a <- rgamma(1000,10,1) # mean and variance 10; the mean is not many sds from 0
var(a)
[1] 10.20819 # reasonably close to the population variance
The approximation suggests the variance of should be close to
var(1/a)
[1] 0.00147171
Algebraic calculation has that the actual population variance is
Now for the tighter one:
a <- rgamma(1000,100,10) # should have mean 10 and variance 1
var(a)
[1] 1.069147
The approximation suggests the variance of should be close to
var(1/a)
[1] 0.0001122586
Algebraic calculation shows that the population variance of the reciprocal is .