Dalam paket R AER Anda akan menemukan fungsinya dispersiontest
, yang mengimplementasikan Test for Overdispersion oleh Cameron & Trivedi (1990).
Ini mengikuti ide sederhana: Dalam model Poisson, rerata adalah dan variansnya adalah juga. Mereka sama. Tes ini hanya menguji asumsi ini sebagai hipotesis nol terhadap alternatif di mana mana konstanta berarti dispersi rendah dan berarti overdispersi. Fungsi Adalah beberapa fungsi monoton (sering linier atau kuadrat; yang pertama adalah default). Tes yang dihasilkan setara dengan pengujian vs dan statistik uji yang digunakan adalah statistik yang asymptotically normal di bawah nol.V a r ( Y ) = μ V a r ( Y ) = μ + c ∗ f ( μ ) c < 0 c > 0 f ( . ) H 0 : c = 0 H 1 : c ≠ 0E(Y)=μVar(Y)=μVar(Y)=μ+c∗f(μ)c<0c>0f(.)H0:c=0H1:c≠0t
Contoh:
R> library(AER)
R> data(RecreationDemand)
R> rd <- glm(trips ~ ., data = RecreationDemand, family = poisson)
R> dispersiontest(rd,trafo=1)
Overdispersion test
data: rd
z = 2.4116, p-value = 0.007941
alternative hypothesis: true dispersion is greater than 0
sample estimates:
dispersion
5.5658
Di sini kita melihat dengan jelas bahwa ada bukti overdispersi (c diperkirakan sekitar 5,57) yang berbicara cukup kuat terhadap asumsi equidispersi (yaitu c = 0).
Perhatikan bahwa jika Anda tidak menggunakan trafo=1
, itu akan benar-benar melakukan tes vs dengan yang tentu saja memiliki hasil yang sama dengan tes lainnya terlepas dari statistik uji yang digeser oleh satu. Alasan untuk ini, bagaimanapun, adalah bahwa yang terakhir sesuai dengan parametrization umum dalam model kuasi-Poisson. H0:c∗=1H1:c∗≠1c∗=c+1
glm(trips ~ 1, data = data, family = poisson)
(1
bukan.
untuk data saya), tapi bagus, terima kasih