Saya ingin mencocokkan output dari lmer (benar-benar glmer) dengan contoh binomial mainan. Saya sudah membaca sketsa dan yakin saya mengerti apa yang sedang terjadi.
Tapi ternyata saya tidak. Setelah macet, saya memperbaiki "kebenaran" dalam hal efek acak dan pergi setelah memperkirakan efek tetap saja. Saya memasukkan kode ini di bawah. Untuk melihat bahwa itu sah, Anda dapat berkomentar + Z %*% b.k
dan itu akan cocok dengan hasil GLM biasa. Saya berharap untuk meminjam kekuatan otak untuk mencari tahu mengapa saya tidak dapat mencocokkan output lmer ketika efek acak dimasukkan.
# Setup - hard coding simple data set
df <- data.frame(x1 = rep(c(1:5), 3), subject = sort(rep(c(1:3), 5)))
df$subject <- factor(df$subject)
# True coefficient values
beta <- matrix(c(-3.3, 1), ncol = 1) # Intercept and slope, respectively
u <- matrix(c(-.5, .6, .9), ncol = 1) # random effects for the 3 subjects
# Design matrices Z (random effects) and X (fixed effects)
Z <- model.matrix(~ 0 + factor(subject), data = df)
X <- model.matrix(~ 1 + x1, data = df)
# Response
df$y <- c(1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1)
y <- df$y
### Goal: match estimates from the following lmer output!
library(lme4)
my.lmer <- lmer( y ~ x1 + (1 | subject), data = df, family = binomial)
summary(my.lmer)
ranef(my.lmer)
### Matching effort STARTS HERE
beta.k <- matrix(c(-3, 1.5), ncol = 1) # Initial values (close to truth)
b.k <- matrix(c(1.82478, -1.53618, -.5139356), ncol = 1) # lmer's random effects
# Iterative Gauss-Newton algorithm
for (iter in 1:6) {
lin.pred <- as.numeric(X %*% beta.k + Z %*% b.k)
mu.k <- plogis(lin.pred)
variances <- mu.k * (1 - mu.k)
W.k <- diag(1/variances)
y.star <- W.k^(.5) %*% (y - mu.k)
X.star <- W.k^(.5) %*% (variances * X)
delta.k <- solve(t(X.star) %*% X.star) %*% t(X.star) %*% y.star
# Gauss-Newton Update
beta.k <- beta.k + delta.k
cat(iter, "Fixed Effects: ", beta.k, "\n")
}