Versi keputusan banyak masalah umum dalam aljabar linier atas bilangan bulat (atau rasional) berada di kelas , lihat makalahDET
Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf, Christoph Meinel: Struktur dan Pentingnya Kelas Logspace-MOD. Teori Sistem Matematika 25 (3): 223-237 (1992)
terkandung dalam D S P A C E ( log 2 ) .DETDSPACE(log2)
Menghitung nilai eigen sedikit lebih rumit:
1) Dalam , seseorang dapat menghitung koefisien dari polinomial karakteristik.DSPACE(log2)
2) Kemudian Anda dapat menggunakan algoritma paralel dengan Reif dan Neff untuk menghitung perkiraan nilai eigen. Algoritme berjalan pada CREW-PRAM dalam waktu logaritmik dengan banyak prosesor secara polinomi, sehingga dapat disimulasikan dengan ruang poli-logaritmik. (Ini tidak secara eksplisit dinyatakan dalam makalah, tetapi PRAM mereka harus seragam log-ruang.) Ruang yang digunakan adalah polylogarithmic dalam ukuran matriks input dan presisi . Precision p berarti Anda mendapatkan perkiraan hingga kesalahan aditif 2 - p .pp2−p
Ini adalah gabungan fungsi yang dapat dihitung dalam ruang poli-logaritmik. (Kaset output hanya untuk menulis dan oneway.)
C. Andrew Neff, John H. Reif: Algoritma Efisien untuk Masalah Roots Kompleks. J. Complexity 12 (2): 81-115 (1996)