Biarkan menjadi fungsi. Kami ingin memperkirakan rata-rata ; yaitu: .f E [ f ( n ) ] = 2 - n ∑ x ∈ { 0 , 1 } n f ( x )
NOTE: In the OP, the range of f was [0,1]. I changed this a bit for technical reasons. (This should simplify the problem; if not, forget it!)
Biarkan menjadi algoritma penduga (acak). Asumsikan bahwa memiliki akses kotak hitam ke . Kami menyatakan ini oleh .E f E f
Ada dua kondisi:
1) Waktu berjalan Pengukur: Ada satu polinomial sehingga untuk semua dan semua , waktu berjalan dibatasi oleh .n f E f ( 1 n ) p ( n )
2) Ketelitian Estimator dengan keyakinan : Ada polinomial tunggal , sehingga untuk semua dan semua , kita memiliki dengan probabilitas setidaknya .n f 1δ
NOTE: The confidence δ was not in the OP. The parameter δ is in (0,1), and may depend on n. For instance, it may be 1-1/2^n.
Apakah ada penaksir seperti itu?
Latar Belakang dan Motivasi
Saya tidak menyebutkan motivasi saya di awal karena membutuhkan banyak pengetahuan latar belakang. Pokoknya, bagi para penggemar, saya jelaskan secara singkat: Kebutuhan akan penduga seperti itu muncul dalam konteks "Bukti Kemampuan," sebagaimana didefinisikan dalam artikel berikut:
Mihir Bellare, Oded Goldreich. Proving Computational Ability , 1992. Naskah tidak diterbitkan.
Khususnya, di bagian bawah halaman 5, penulis secara implisit mengasumsikan keberadaan estimator tersebut (Tidak ada ketepatan, dan waktu berjalan tidak didefinisikan secara tepat; namun konteksnya jelas mendefinisikan segalanya.)
Upaya pertama saya adalah membaca " Contoh Pengambil Sampel --- Perspektif Komputasi pada Pengambilan Sampel ." Ini berkaitan dengan masalah yang sangat mirip, namun probabilitas kesalahan yang didefinisikan adalah aditif, sedangkan kita adalah multiplikatif. (Saya tidak sepenuhnya membaca koran, mungkin itu menyebutkan apa yang saya butuhkan di suatu tempat.)
EDIT (sesuai permintaan Tsuyoshi): Faktanya, definisi "Bukti Kemampuan Komputasi" mensyaratkan adanya "ekstraktor pengetahuan" yang waktu berjalan (yang diharapkan) adalah . Karena kita tidak tahu , kami ingin memperkirakannya; namun ini tidak boleh mengubah waktu berjalan secara signifikan: itu harus mengubahnya hingga faktor polinomial. Kondisi presisi mencoba menangkap persyaratan tersebut. E[f(n)]