Bagaimana cara membuat Radar Chart yang kompleks?


19

Jadi, saya ingin membuat Grafik Radar Profil Pemain seperti ini:


masukkan deskripsi gambar di sini


Tidak hanya skala masing-masing variabel yang berbeda, tetapi juga saya ingin skala terbalik untuk beberapa statistik seperti stat 'dispossessed', di mana sedikit sebenarnya berarti baik.

Salah satu solusi untuk skala variabel untuk setiap statistik mungkin adalah menetapkan tolok ukur dan kemudian menghitung skor pada skala 100?

Tapi, Bagaimana cara menampilkan angka aktual pada grafik? Juga, bagaimana cara mendapatkan skala terbalik untuk beberapa statistik.

Saat ini bekerja di Excel. Apa alat paling ampuh untuk membuat bagan rumit seperti ini?


Bisakah Anda memberikan contoh dataset yang ingin Anda visualisasikan? Saat ini, pertanyaan Anda tidak jelas. Memberikan contoh dataset dan plot yang sesuai yang ingin Anda lihat akan membantu. Juga, menyediakan tautan eksternal (khususnya dari situs web sementara seperti twitter) tidak disarankan, jadi cobalah menggambarkannya sebaik mungkin dalam pertanyaan itu sendiri.
Nitesh

1
Excel adalah yang terbaik (yang paling indah secara visual)! Anda dapat menemukan implementasi dalam python atau bahasa lain tetapi mereka tidak sehebat excel. Saya mencoba sebulan yang lalu!
Kasra Manshaei

Solusi Kyler luar biasa, tetapi tidak lengkap. Kode di atas hanya memplot poin pada 6 sumbu ... Nilai 20 untuk sumbu "Inverted 3%" tidak memplot ketika saya menjalankan ini.

Jawaban:


13

Wow, ini agak menantang tapi saya bisa membuat salah satu plot ini dengan python. Dua komponen utama adalah:

kode :

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns # improves plot aesthetics


def _invert(x, limits):
    """inverts a value x on a scale from
    limits[0] to limits[1]"""
    return limits[1] - (x - limits[0])

def _scale_data(data, ranges):
    """scales data[1:] to ranges[0],
    inverts if the scale is reversed"""
    for d, (y1, y2) in zip(data[1:], ranges[1:]):
        assert (y1 <= d <= y2) or (y2 <= d <= y1)
    x1, x2 = ranges[0]
    d = data[0]
    if x1 > x2:
        d = _invert(d, (x1, x2))
        x1, x2 = x2, x1
    sdata = [d]
    for d, (y1, y2) in zip(data[1:], ranges[1:]):
        if y1 > y2:
            d = _invert(d, (y1, y2))
            y1, y2 = y2, y1
        sdata.append((d-y1) / (y2-y1) 
                     * (x2 - x1) + x1)
    return sdata

class ComplexRadar():
    def __init__(self, fig, variables, ranges,
                 n_ordinate_levels=6):
        angles = np.arange(0, 360, 360./len(variables))

        axes = [fig.add_axes([0.1,0.1,0.9,0.9],polar=True,
                label = "axes{}".format(i)) 
                for i in range(len(variables))]
        l, text = axes[0].set_thetagrids(angles, 
                                         labels=variables)
        [txt.set_rotation(angle-90) for txt, angle 
             in zip(text, angles)]
        for ax in axes[1:]:
            ax.patch.set_visible(False)
            ax.grid("off")
            ax.xaxis.set_visible(False)
        for i, ax in enumerate(axes):
            grid = np.linspace(*ranges[i], 
                               num=n_ordinate_levels)
            gridlabel = ["{}".format(round(x,2)) 
                         for x in grid]
            if ranges[i][0] > ranges[i][1]:
                grid = grid[::-1] # hack to invert grid
                          # gridlabels aren't reversed
            gridlabel[0] = "" # clean up origin
            ax.set_rgrids(grid, labels=gridlabel,
                         angle=angles[i])
            #ax.spines["polar"].set_visible(False)
            ax.set_ylim(*ranges[i])
        # variables for plotting
        self.angle = np.deg2rad(np.r_[angles, angles[0]])
        self.ranges = ranges
        self.ax = axes[0]
    def plot(self, data, *args, **kw):
        sdata = _scale_data(data, self.ranges)
        self.ax.plot(self.angle, np.r_[sdata, sdata[0]], *args, **kw)
    def fill(self, data, *args, **kw):
        sdata = _scale_data(data, self.ranges)
        self.ax.fill(self.angle, np.r_[sdata, sdata[0]], *args, **kw)

# example data
variables = ("Normal Scale", "Inverted Scale", "Inverted 2", 
            "Normal Scale 2", "Normal 3", "Normal 4 %", "Inverted 3 %")
data = (1.76, 1.1, 1.2, 
        4.4, 3.4, 86.8, 20)
ranges = [(0.1, 2.3), (1.5, 0.3), (1.3, 0.5),
         (1.7, 4.5), (1.5, 3.7), (70, 87), (100, 10)]            
# plotting
fig1 = plt.figure(figsize=(6, 6))
radar = ComplexRadar(fig1, variables, ranges)
radar.plot(data)
radar.fill(data, alpha=0.2)
plt.show()    

6

Ini adalah versi R:

Kode-kode di sini tampaknya sudah usang untuk ggplot2: 2.0.0

Coba paket saya zmisc: devtools:install_github("jerryzhujian9/ezmisc")

Setelah Anda menginstalnya, Anda akan dapat menjalankan:

df = mtcars
df$model = rownames(mtcars)

ez.radarmap(df, "model", stats="mean", lwd=1, angle=0, fontsize=0.6, facet=T, facetfontsize=1, color=id, linetype=NULL)
ez.radarmap(df, "model", stats="none", lwd=1, angle=0, fontsize=1.5, facet=F, facetfontsize=1, color=id, linetype=NULL)

Kode utama diadaptasi dari http://www.cmap.polytechnique.fr/ ~ lepennec/R/Radar/ RadarAndParallelPlots.html

masukkan deskripsi gambar di sini


3

Berikut ini adalah modifikasi kecil dari solusi Kyler Brown untuk Python yang juga memungkinkan nilai negatif pada sumbu kutub ( yang saat ini tidak secara resmi didukung oleh matplotlib ), pada dasarnya hanya dengan menghapus tanda centang untuk nilai-nilai negatif dari set_rgrids:

merencanakan

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns # improves plot aesthetics


def _invert(x, limits):
    """inverts a value x on a scale from
    limits[0] to limits[1]"""
    return limits[1] - (x - limits[0])

def _scale_data(data, ranges):
    """scales data[1:] to ranges[0],
    inverts if the scale is reversed"""
    # for d, (y1, y2) in zip(data[1:], ranges[1:]):
    for d, (y1, y2) in zip(data, ranges):
        assert (y1 <= d <= y2) or (y2 <= d <= y1)

    x1, x2 = ranges[0]
    d = data[0]

    if x1 > x2:
        d = _invert(d, (x1, x2))
        x1, x2 = x2, x1

    sdata = [d]

    for d, (y1, y2) in zip(data[1:], ranges[1:]):
        if y1 > y2:
            d = _invert(d, (y1, y2))
            y1, y2 = y2, y1

        sdata.append((d-y1) / (y2-y1) * (x2 - x1) + x1)

    return sdata

def set_rgrids(self, radii, labels=None, angle=None, fmt=None,
               **kwargs):
    """
    Set the radial locations and labels of the *r* grids.
    The labels will appear at radial distances *radii* at the
    given *angle* in degrees.
    *labels*, if not None, is a ``len(radii)`` list of strings of the
    labels to use at each radius.
    If *labels* is None, the built-in formatter will be used.
    Return value is a list of tuples (*line*, *label*), where
    *line* is :class:`~matplotlib.lines.Line2D` instances and the
    *label* is :class:`~matplotlib.text.Text` instances.
    kwargs are optional text properties for the labels:
    %(Text)s
    ACCEPTS: sequence of floats
    """
    # Make sure we take into account unitized data
    radii = self.convert_xunits(radii)
    radii = np.asarray(radii)
    rmin = radii.min()
    # if rmin <= 0:
    #     raise ValueError('radial grids must be strictly positive')

    self.set_yticks(radii)
    if labels is not None:
        self.set_yticklabels(labels)
    elif fmt is not None:
        self.yaxis.set_major_formatter(FormatStrFormatter(fmt))
    if angle is None:
        angle = self.get_rlabel_position()
    self.set_rlabel_position(angle)
    for t in self.yaxis.get_ticklabels():
        t.update(kwargs)
    return self.yaxis.get_gridlines(), self.yaxis.get_ticklabels()

class ComplexRadar():
    def __init__(self, fig, variables, ranges,
                 n_ordinate_levels=6):
        angles = np.arange(0, 360, 360./len(variables))

        axes = [fig.add_axes([0.1,0.1,0.9,0.9],polar=True,
                label = "axes{}".format(i)) 
                for i in range(len(variables))]
        l, text = axes[0].set_thetagrids(angles, 
                                         labels=variables)
        [txt.set_rotation(angle-90) for txt, angle 
             in zip(text, angles)]
        for ax in axes[1:]:
            ax.patch.set_visible(False)
            ax.grid("off")
            ax.xaxis.set_visible(False)
        for i, ax in enumerate(axes):
            grid = np.linspace(*ranges[i], 
                               num=n_ordinate_levels)
            gridlabel = ["{}".format(round(x,2)) 
                         for x in grid]
            if ranges[i][0] > ranges[i][1]:
                grid = grid[::-1] # hack to invert grid
                          # gridlabels aren't reversed
            gridlabel[0] = "" # clean up origin
            # ax.set_rgrids(grid, labels=gridlabel, angle=angles[i])
            set_rgrids(ax, grid, labels=gridlabel, angle=angles[i])
            #ax.spines["polar"].set_visible(False)
            ax.set_ylim(*ranges[i])
        # variables for plotting
        self.angle = np.deg2rad(np.r_[angles, angles[0]])
        self.ranges = ranges
        self.ax = axes[0]
    def plot(self, data, *args, **kw):
        sdata = _scale_data(data, self.ranges)
        self.ax.plot(self.angle, np.r_[sdata, sdata[0]], *args, **kw)
    def fill(self, data, *args, **kw):
        sdata = _scale_data(data, self.ranges)
        self.ax.fill(self.angle, np.r_[sdata, sdata[0]], *args, **kw)

# example data
variables = ("Normal Scale", "Inverted Scale", "Inverted 2", 
            "Normal Scale 2", "Normal 3", "Normal 4 %", "Inverted 3 %")
data = (-1.76, 1.1, 1.2, 
        4.4, 3.4, 86.8, 20)
ranges = [(-5, 3), (1.5, 0.3), (1.3, 0.5),
         (1.7, 4.5), (1.5, 3.7), (70, 87), (100, -50)]            
# plotting
fig1 = plt.figure(figsize=(6, 6))
radar = ComplexRadar(fig1, variables, ranges)
radar.plot(data)
radar.fill(data, alpha=0.2)
plt.show()
Dengan menggunakan situs kami, Anda mengakui telah membaca dan memahami Kebijakan Cookie dan Kebijakan Privasi kami.
Licensed under cc by-sa 3.0 with attribution required.