Meskipun ini adalah pertanyaan berusia 7 tahun, saya pikir saya dapat berkontribusi dalam pendekatan yang saya temukan terinspirasi oleh beberapa poin yang disebutkan dalam catatan aplikasi dari SIEMENS.
Perkiraan suhu konduktor yang stabil
Θo hlm= Θa m b+ Δ Θm a x( Sayao hlmsayam a x)2
sayam a x: arus kontinu maksimum, Io hlm: operasi saat ini
Θx: x suhu, Θa m b: ambient, Δ Θm a x: Θ rise @ Im a x
Arus operasional maksimum yang berkelanjutan
Kabel telah menetapkan kemampuan pengangkutan saat ini untuk operasi yang berkelanjutan. Insulasi kabel yang berbeda memungkinkan untuk suhu operasional maksimum yang berbeda. Ini dapat dihitung mengikuti norma IEC , tetapi kita dapat menggunakan lembar data kabel khusus kami atau yang umum untuk mendapatkan nilai ball-park.
Ditentukan di sini , 2 Single Core 2.5mm ^ 2 kabel berisolasi PVC memiliki daya dukung arus 24 Amps (AC / DC) dengan suhu operasional konduktor pada 70ºC dan suhu sekitar 30ºC.
Ditentukan pada catatan aplikasi Nexans , 2 Core Single 2.5mm ^ 2 kabel berisolasi XLPE memiliki daya dukung saat ini 24 Amps dengan suhu operasional konduktor pada 90ºC dan suhu sekitar 45ºC
Dari data ini kita dapat mengekstrak yang berikut:
PVC 2.5mm2@ Sayam a x= 24 A , Δ Θm a x= 40HaiC, Θo hlmm a x≤ 70HaiC
XLPE 2.5mm2@ Sayam a x= 24 A , Δ Θm a x= 45HaiC, Θo hlmm a x≤ 90HaiC
If we assume that your cable is XLPE and in the air with a maximum ambient temperature of 25ºC:
Θop=25+45⋅(3024)2≈95.3oC
This is above the maximum operational temperature of the XLPE insulated cable. If it is the PVC insulated one, the calculation results in >87ºC, where the insulation will probably melt. PVC at temperatures above 60ºC becomes unstable.
Comparison to deratings ( correction factors )
If we compare the use of this formula to the deratings we can see a certain coherence;
The Application note states that for other ambient air temperatures, correction factors have to be applied for the max current capabilities:
|Amb ºC| 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 |
|Factor|1.10|1.05|1.00|0.94|0.88|0.82|0.74|0.67|0.58|0.47|
I understand that the objective is to keep the core temp below 90ºC, by limiting the max current.
Spawning from the same cable (2 Single Core 2.5mm^2 XLPE insulated cables) example the max ratings would be as follows:
|Amb ºC| 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 |
|MaxAmp|26.4|25.2|24.0|22.56|21.12|19.68|17.76|16.08|13.92|11.28|
Θop=Θamb+45⋅(Iop24)2≈steady state temp in oC
The following estimated steady state temperatures are as follows
|Amb ºC| 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 |
| Amps |26.4 |25.2 |24.0 |22.56|21.12|19.68|17.76|16.08|13.92|11.28|
|ssTemp|89.45|89.61|90.00|89.76|89.85|90.26|89.64|90.20|90.14|89.94|
Time required to reach steady state temperature
How long it will take to reach this temperature can be estimated by considering the short-circuit current rating of the cable. Looking it up in the tables, 2.5mm^2 @ 1second short = 358 Amps.
The heating transition of the cable follows approximately the following equation:
Θop=Θamb+ΔΘss−amb(1−e−tτ)
τ(min)=160⋅∣∣∣I1s−shortImax∣∣∣2=160⋅∣∣∣35824∣∣∣2≈3.7min
\tau defines the time it requires to reach 63% of the final temperature. Normally we estimate that at 5*\tau we are at around 99% of the final temperature. 5*3.7 min = 18.5 minutes.
τ is valid for reaching any calculated steady state conditions
Time to reach any steady state temperature≈5⋅τ≈18.5min
ΔΘss−amb=Θsteadystate−Θamb
If we plot this it looks as follows:
ballpark/estimated demonstration
Our calculated \tau was with values: Ambient temperature 45ºC, operating temperature = 90ºC. \Delta T = 45ºC. I_max = 24 Amps
Power dissipation follows a square rule, P=I^2*R , we could extrapolate that to say that rate of temperature rise follows a similar square rule.
Kτ≈(IrefIop)2=(2430)2=0.64
but our calculated \Delta T (temperature rise) is of 70ºC versus 45ºC.
KΔΘ≈ΔΘopΔΘref=7045≈1.5556
applying these to our \tau as follows would give us
τop=τref⋅Kτ⋅KΔΘ=3.7⋅0.64⋅1.5556=3.68⇝5τ=18.4 min
Note that these formulas for the demo of a modified \tau was invented out of "thin air", by "feeling", by some "logical" considerations. This may be completely wrong, and if I have made an assumption that is "crazy" please do let me know so I can learn my mistake. Someday I will make some measurements to test this out.
Resources