Pertanyaan dasar tentang amplifikasi transistor


17

Adakah yang bisa menjelaskan bagaimana transistor dapat memperkuat tegangan atau arus? Menurut saya, amplifikasi berarti - Anda mengirim sesuatu yang kecil, hasilnya lebih besar. Katakan misalnya, saya ingin memperkuat gelombang suara. Saya berbisik ke penguat suara, & itu keluar mengatakan, 5 kali lebih besar (tergantung pada faktor amplifikasi)

Tetapi ketika saya membaca tentang tindakan Transistor Amplifying , semua buku teks mengatakan bahwa karena perubahan kecil pada basis saat ini ΔIb tetapi perubahan besar terkait pada arus Emitter ΔIe, ada amplifikasi. Tetapi di mana amplifikasi? Apa yang sedang diperbesar seperti yang saya definisikan? Apakah pemahaman saya tentang istilah amplifikasi salah? Dan bagaimana arus ditransfer dari area resistansi rendah ke resistansi tinggi?

Saya pikir saya sudah mengerti bagaimana transistor dibangun & bagaimana arus mengalir. Jadi siapa pun dapat menjelaskan tindakan amplifikasi transistor dengan jelas & menghubungkannya dengan apa yang saya mengerti tentang amplifikasi.


@ ChrisStratton Inilah pertanyaan tentang grounding electronics.stackexchange.com/q/24598/7364
Green Noob

Apakah Anda bertanya pada diri sendiri mengapa buku-buku itu berbicara tentang perubahan arus basis bukan hanya "arus"?
0x6d64

@ 0x6d64 Bisakah Anda lebih rumit?
Green Noob

Ada beberapa jawaban yang sangat buruk di sini. Banyak kebingungan, apakah transistor memperkuat arus, melakukan transistor menguatkan tegangan dll.
rhody

Jawaban:


18

Saya akan mulai dengan definisi amplifikasi. Dalam cara yang paling umum, amplifikasi hanyalah rasio antara dua nilai. Itu tidak menyiratkan bahwa nilai output lebih besar dari nilai input (meskipun itulah cara yang paling umum digunakan). Juga tidak penting jika perubahan saat ini besar atau kecil.

Sekarang mari kita beralih ke beberapa nilai amplifikasi umum yang digunakan:

Yang paling penting (dan yang dibicarakan dengan pertanyaan Anda) adalah . Ini didefinisikan sebagai β = I cβ , di manaIcadalah arus masuk ke kolektor danIbadalah arus ke pangkalan. Jika kita mengatur ulang rumusnya sedikit, kita akan mendapatkanIc=βIbβ=IcIbIcIbIc=βIb yang merupakan rumus yang paling umum digunakan. Karena formula itu, beberapa orang mengatakan bahwa transistor "memperkuat" arus basis.

Sekarang bagaimana hubungannya dengan arus emitor? Nah kami juga memiliki formula Ketika kita menggabungkan formula yang dengan rumus kedua, kita mendapatkan β saya b + I b + I e = 0 . Dari itu kita bisa mendapatkan arus emitor sebagai - I e = β I b + I b = I b ( β + 1 ) (perhatikan bahwa saya esayac+sayab+sayae=0βsayab+sayab+sayae=0-sayae=βsayab+sayab=sayab(β+1)sayae sedang mengalir ke emitor, jadi negatif).

Dari itu Anda dapat melihat bahwa menggunakan sebagai alat yang berguna dalam perhitungan, kita dapat melihat hubungan antara arus basis dari transistor dan arus emitor dari transistor. Karena dalam praktiknya β berada dalam kisaran ratusan hingga ribuan, kita dapat mengatakan bahwa arus basis "kecil" adalah "diperkuat" menjadi arus kolektor "besar" (yang pada gilirannya membuat arus emitor "besar"). Perhatikan bahwa saya tidak berbicara tentang delta apa pun sampai sekarang. Itu karena transistor sebagai elemen tidak memerlukan arus untuk berubah. Anda cukup menghubungkan basis ke arus DC konstan dan transistor akan berfungsi dengan baik. Jika perubahan arus diperlukan, itu 'ββ

Ada nilai lain yang juga digunakan dan namanya adalah . Inilah dia: α = I cα . Ketika kita mengatur ulang itu, kita dapat melihat bahwaIc=αIe. Jadiαadalah nilai dimana arus emitor diperkuat untuk menghasilkan arus kolektor. Dalam hal ini, amplifikasi sebenarnya memberi kita output yang lebih kecil (meskipun dalam praktiknyaαmendekati 1, kira-kira 0,98 atau lebih tinggi), karena seperti yang kita ketahui, arus emitor yang keluar dari transistor adalah jumlah arus basis dan arus kolektor yang masuk ke transistor.α=sayacsayaesayac=αsayaeαα

Sekarang saya akan berbicara sedikit tentang bagaimana transistor menguatkan tegangan dan arus. Rahasianya adalah: Tidak. Tegangan atau penguat arus tidak! Penguat itu sendiri adalah sirkuit yang sedikit lebih kompleks yang mengeksploitasi properti transistor. Ia juga memiliki simpul input dan simpul keluaran. Tegangan amplifikasi adalah rasio tegangan antara node . Amplifikasi saat ini adalah rasio arus antara dua node:Ai=IoutAv=VoutVin . Kami juga memiliki amplifikasi daya yang merupakan produk dari amplifikasi arus dan tegangan. Perhatikan bahwa amplifikasi dapat berubah tergantung pada node yang kami pilih untuk menjadi simpul input dan simpul keluaran!Ai=IoutIin

Ada beberapa nilai menarik terkait dengan transistor yang dapat Anda temukan di sini

So to sum this up: We have transistor which is doing something. In order to safely use transistor, we need to be able to represent what transistor is doing. One of the ways of representing processes happening in the transistor is to use the term "amplification". So using amplification, we can avoid actually understanding what is happening in transistor (if you have any semiconductor physics classes, you'll learn that there) and just have few equations which will be useful for a large number of practical problems.


Thanks a lot for answering my earlier questions. But can you tell me why the author has introduced a 5 Kohm resistance in series while explaining voltage 'amplification'?? & where did he get the 20 ohm input resistance? Link
Green Noob

Does't really answer where the amplification comes from.
rhody

@rhody Back when I was looking at the question, I determined that the main issue is the use of terminology and therefore provided a terminological answer. Since OP already had a referece about transistors, there was no need to go into details explaining what actually happens.
AndrejaKo

It is my understanding that amplification is when you increase the signal strength,which is based on the energy carried by the signal and measured in terms of Power(Watts). So an amplifier increases the power. A "voltage" amplifier boosts the signal voltage without lowering the current and this in turn boosts the output power. A "power" amplifier boosts both the AC voltage and the AC current so there is a significant power gain(more than a voltage amplifier).
Mr X

@Mr X I explicitly disagree with your understanding. Namely, we have the "amplification" as an abstraction tool in general, and then we have practical uses of this tool. I explicitly decided not to try to muddy the water in this answer by referring to the practical uses, because I believe that it's very useful to first understand the abstraction tool on its own.
AndrejaKo

7

Transistor does not amplify. Imagine sound waves hitting a microphone: what happens actually is that the sound signal does not pass into the microphone, but the microphone produces a signal corresponding to the sound signal; It is not the actual signal.

Remember that the actual signals in real world cannot be amplified or attenuated. Can you catch a sound or any other real world signal? No. They are as they are, we can only make a system which can work on the effect of the real world signal; sound waves hit on a microphone, light hits on a camera lens etc.

But when it comes to the case of a transistor, you apply an input signal to the base and you obtain a new signal corresponding to the input signal with greater amplitude in the collector. Keep in mind that this happens because a small change in the input side will correspond to a large change in the output side, due to the variation in the resistance. It is only an effect one to one. The output signal is totally a new signal of a grater amplitude, not the actual signal.


This doesn't answer the question at all.
rhody

Actually the electrical wave and a considerable part of the charge carriers do pass from base to emmiter, hence, we could say the new signal is in part composed by the previous one. But this is quite phylosophical, when for us, signals are voltage levels, measurable, repeatable...
Brethlosze

5

The signal is being amplified. Depending on the design of the transistor amplifier the actual base current may or may not be part of the output current. Don't get hung up on a definition of amplification that requires every input electron to get larger and then pass to the output...


Please explain?
Green Noob

@GreenNoob - most transistor amplifiers have bias currents that ensure the circuit is operating linearly. With just the bias currents present, it will be true that emitter current is greater than base current, but this isn't very interesting since these currents are just constants. The books speak about changes in current b/c the signals we ordinarily think of amplifying are imposed as fluctuations on top of the bias currents.
JustJeff

4

The working principle of a BJT (Bipolar Junction Transistor), which makes it a useful thing, is that it amplifies current. Throw a small current in, get a larger current out. The amplification factor is an important parameter of the transistor, and is called hFE. A general purpose transistor may have an hFE of 100, for instance, sometimes higher. Power transistors have to do it with less, like 20 to 30.
So if I inject a 1 mA current in the base of my general purpose NPN transistor I'll get 100 mA of collector current. That's amplification, right? Current amplification.

How about voltage amplification? Well, let's add a couple of resistors. Resistors are cheap, but if you want to make money you can try to sell them expensive by calling them "voltage-to-current converters" :-).

masukkan deskripsi gambar di sini

We've added a base resistor, which will cause a base current of

IB=VB0.7VRB

And we know that the collector current IC is a factor hFE higher, so

IC=hFE(VB0.7V)RB

Resistors are really great things, because next to "voltage-to-current converters" you an also use them as "current-to-voltage converters"! (we can charge even more for them!) Due to Ohm's Law:

VRL=RLIC

and since VC=VCCVRL

we get

VC=VCCRLhFE(VB0.7V)RB

or

VC=hFERLRBVB+(hFERLRB0.7V+VCC)

The term between the brackets is a constant which we're not interested in at the moment. The first term shows that VC is VB multiplied by some factor depending on three constants. Let's use concrete values: 100 for hFE, 10 kΩ for RB and 1 kΩ for RC. Then (again ignoring the constant factor)

VC=hFERLRBVB=1001kΩ10kΩVB=10VB

So the output voltage is 10 times the input voltage plus a constant bias. Looks like we can use the transistor for voltage amplification as well.


1
In the strict physics sense, transistors do not amplify current, since even the bipolar transistor is controlled using the base emitter voltage, but I agree it's a convenient shorthand. amasci.com/amateur/transis.html
Mister Mystère

@MisterMystère: a bipolar transistor in common emitter is controlled by base current, not voltage. It's the base current that causes an X times larger collector current. You're wrong.
Joris Groosman

@JorisGroosman Ever heard of the textbook "Art of Electronics?" They teach bipolar transistors with voltage-input design philosophy, not current input. Author Win Hill specifically points out all the flaws in the hfe-based, current-input viewpoint, and shows how they're solved by seeing BJTs as voltage driven; ruled by the Ebers-Moll equation. He points out that current-input doesn't apply to diff amp, current mirror or cascode. Check out one of his forum responses about BJT voltage input versus current input: cr4.globalspec.com/comment/720374/Re-Voltage-vs-Current
wbeaty

@wbeaty: Yes, I know AoE. Odd thing: since the 1950s engineers have calculated collector current as a function of base current is a gazillion of practical applications, and they all work! Current as a function of base voltage probably doesn't go beyond the blackboard.
Joris Groosman

No,you don't know AOE, since they show why hfe DOESN'T work for analog design. Amps based in hfe will fail if temp drifts a couple of degrees. The authors push the voltage-based BJT design philosophy. As Win Hill points out, hfe doesn't explain voltage-input stages such as emitter-followers or diff amps. Op amps and their voltage inputs are hardly a blackboard-only concept. They worK, and are immune to vast changes in the hfe of the transistors involved. Yes, hfe is a useful concept, but without voltage-based signals and Ebers-Moll, a large part of modern analog design would fail.
wbeaty

3

Amplifiy sound, and you're amplifying the energy-flow: the input watts of sound become larger output watts.

Note that an electrical transformer doesn't amplify. It can step up voltage, but it cant increase the watts.

Transistors (and any sort of valve or switch) can amplify. They do it by using a tiny wattage to control a power supply which can output a huge wattage. The large output comes from the power supply, while the input signal is valving the transistpr on and off.

If you have a giant hydraulic press, you can crush cars by touching a valve switch with your little finger. The valve amplified your finger motion to mash Chevys. But actually it was the hundreds-HP haudraulic supply which provided the increased wattage. With NPNs, same idea. Transistors are valves for flowing charge instead of flowing haudraulic fluid.


Nice explanation... To move it to the electrical domain, we can simply say the transistor is an "electrically-controlled resistor" inserted in series ("rheostat") or in parallel ("shunt") to the load. Thus it forms a voltage or current divider. To be more precise, we can only add that this "resistor" is non-linear, and it is controlled both by the side of the input source and the load. And also, the transistor is a passive, not active device (regarding the power).
Circuit fantasist

From this "energy viewpoint", the transistor does not amplify; contrary, it attenuates the power of the source... it does not produce energy; it consumes energy.
Circuit fantasist

reading all the answers of yours really helps me a lot, especially thanks to @wbeaty, your explaination is realllly nice!

Your car crush analogy is soooo much easier to understand than a water valve. Thanks!
dval

0

What is my understanding is that for a transistor to amplify you need to bias it properly. Forward biasing of BE junction makes it a conducting diode so input resistance is less. Reverse biasing CE junction makes it non conducting diode so output resistance is high. And if Ic is almost equal to Ie then the current causes a low voltage drop at input and large one at output. This is why its called an Amplifier.


0

Dengan transistor, Anda dapat mencapainya: Berikan sinyal kecil (ac) pada input, dan dapatkan sinyal bernilai lebih besar (amplitudo lebih tinggi) pada output. Tapi ini tidak semua. Anda harus memberikan suplai DC di kolektor dan pangkalan; emitor jika diperlukan. Ini disebut biasing titik dc. Daya rms yang Anda dapatkan pada output akan lebih kecil dari daya dc yang Anda berikan.

Jika Anda ingin melakukan analisis, ada dua langkah yang terlibat untuk sirkuit apa pun.

  1. Analisis DC: tidak mempertimbangkan sinyal ac. Cari tahu nilai-nilai semua arus dioda berdasarkan tegangan dc di berbagai node (Kolektor, basis, emitor). Ini dilakukan dengan menggunakan KVL di sepanjang berbagai loop.

  2. Model AC: Ini membuat sangat jelas: apa yang kita gambar sebagai rangkaian v / s elemen apa yang sebenarnya ada di dalamnya. Lebih jauh, dioda memiliki resistansi ke depan. Jadi model yang sebenarnya akan seperti ini:Gambar telah diambil dari buku "Perangkat Elektronik dan Teori Sirkuit

Dari analisis DC, Anda harus menemukan nilai Ie. Menurut teori dioda, Re = (26mV / Ie). Tujuan kami adalah menemukan Vout / Vin.
1. Vout akan tergantung pada Ic.
2. Ic akan tergantung pada Ib.
3. Ib akan tergantung pada Vin dan Re.
4. Kami telah menemukan dari analisis DC.

masukkan deskripsi gambar di sini Dalam analisis AC, kami membuat semua suplai DC ke 0V. Dengan melihat ini, Anda dapat mengetahui bahwa sinyal keluaran akan menjadi sinyal yang diperkuat, bukan?

Catatan: Ini hanya untuk memberi Anda ide intuitif bahwa amplifikasi memang terjadi. Tetapi apakah Anda akan mendapatkan amplifikasi atau tidak tergantung pada apakah transistor dalam linier (amplifier), saturasi atau terputus (switch). Sekali lagi, apa yang akan diperkuat (arus atau tegangan) tergantung pada jenis konfigurasi. Sehingga semua terdiri dari 3-4 bab dari buku standar tentang teori analog.

Dengan menggunakan situs kami, Anda mengakui telah membaca dan memahami Kebijakan Cookie dan Kebijakan Privasi kami.
Licensed under cc by-sa 3.0 with attribution required.