Saya belum sering bekerja dengan data deret waktu, jadi saya mencari beberapa petunjuk tentang cara terbaik untuk melanjutkan dengan pertanyaan khusus ini.
Katakanlah saya memiliki data berikut - grafik di bawah ini:
Di sini ada tahun pada sumbu x. Sumbu-y adalah ukuran 'ketimpangan' misalnya bisa berupa ketimpangan pendapatan di suatu negara.
Untuk pertanyaan ini, saya tertarik untuk bertanya apakah ada sifat naik / turun ke data tahun ke tahun (karena ingin deskripsi yang lebih baik). Intinya, saya ingin bertanya apakah ketidaksetaraan naik tahun lalu dari tahun sebelumnya, apakah sekarang akan turun kembali? Ukuran naik / turun mungkin penting untuk faktor juga.
Saya berpikir bahwa sesuatu seperti wavelet analysis
atau Fourier analysis
dapat membantu, meskipun saya belum pernah menggunakan ini sebelumnya dan saya percaya bahwa ukuran sampel seperti ini terlalu kecil.
Akan tertarik dengan ide / saran untuk saya tindak lanjuti.
EDIT:
Ini adalah data untuk bagan ini:
# year value
#1 1956 0.9570912
#2 1957 1.0303563
#3 1958 0.9568302
#4 1959 1.1449074
#5 1960 0.8962963
#6 1961 1.0431552
#7 1962 0.8050077
#8 1963 0.8533181
#9 1964 0.9971713
#10 1965 1.0453083
#11 1966 0.8221328
#12 1967 1.0594876
#13 1968 1.1244195
#14 1969 1.0705498
#15 1970 0.8669457
#16 1971 0.8757319
#17 1972 1.0815189
#18 1973 1.1458959
#19 1974 1.2782848
#20 1975 1.0729718
#21 1976 1.1569416
#22 1977 1.2063673
#23 1978 1.1509700
#24 1979 1.1172020
#25 1980 1.0691429
#26 1981 1.0907407
#27 1982 1.1753854
#28 1983 0.9440187
#29 1984 1.1214175
#30 1985 1.2777778
#31 1986 1.2141739
#32 1987 0.9481722
#33 1988 1.1484652
#34 1989 0.7968458
#35 1990 1.1721074
#36 1991 1.1569523
#37 1992 0.8160300
#38 1993 0.9483291
#39 1994 1.0898612
#40 1995 0.8196819
#41 1996 1.0297017
#42 1997 1.0207769
#43 1998 0.9720285
#44 1999 0.8685848
#45 2000 0.9228595
#46 2001 0.9171540
#47 2002 1.0470085
#48 2003 0.9313437
#49 2004 1.0943982
#50 2005 1.0248419
#51 2006 0.9392917
#52 2007 0.9666248
#53 2008 1.1243693
#54 2009 0.8829184
#55 2010 0.9619517
#56 2011 1.0030864
#57 2012 1.1576998
#58 2013 0.9944945
Di sini mereka dalam R
format:
structure(list(year = structure(1:58, .Label = c("1956", "1957",
"1958", "1959", "1960", "1961", "1962", "1963", "1964", "1965",
"1966", "1967", "1968", "1969", "1970", "1971", "1972", "1973",
"1974", "1975", "1976", "1977", "1978", "1979", "1980", "1981",
"1982", "1983", "1984", "1985", "1986", "1987", "1988", "1989",
"1990", "1991", "1992", "1993", "1994", "1995", "1996", "1997",
"1998", "1999", "2000", "2001", "2002", "2003", "2004", "2005",
"2006", "2007", "2008", "2009", "2010", "2011", "2012", "2013"
), class = "factor"), value = c(0.957091237579043, 1.03035630567276,
0.956830206830207, 1.14490740740741, 0.896296296296296, 1.04315524964493,
0.805007684426229, 0.853318117977528, 0.997171336206897, 1.04530832219251,
0.822132760780104, 1.05948756976154, 1.1244195265602, 1.07054981337927,
0.866945712836124, 0.875731948296804, 1.081518931763, 1.1458958958959,
1.27828479729065, 1.07297178130511, 1.15694159981794, 1.20636732623034,
1.15097001763668, 1.11720201026986, 1.06914289768696, 1.09074074074074,
1.17538544689082, 0.944018731375053, 1.12141754850088, 1.27777777777778,
1.21417390277039, 0.948172198172198, 1.14846524606799, 0.796845829569407,
1.17210737869653, 1.15695226716732, 0.816029959161985, 0.94832907620264,
1.08986124767836, 0.819681861348528, 1.02970169141241, 1.02077687443541,
0.972028455959697, 0.868584838281808, 0.922859547859548, 0.917153996101365,
1.04700854700855, 0.931343718539713, 1.09439821062628, 1.02484191508582,
0.939291692822766, 0.966624816907303, 1.12436929683306, 0.882918437563246,
0.961951667980037, 1.00308641975309, 1.15769980506823, 0.994494494494494
)), row.names = c(NA, -58L), class = "data.frame", .Names = c("year",
"value"))