Bagaimana cara mendapatkan prediksi untuk variabel tertentu di WinBUGS?


10

Saya adalah pengguna baru WinBUGS dan memiliki satu pertanyaan untuk bantuan Anda. Setelah menjalankan kode berikut, saya mendapatkan parameter beta0through beta4(stats, density), tetapi saya tidak tahu bagaimana mendapatkan prediksi nilai terakhir h, yang saya atur NAmenjadi model dalam kode.

Apakah ada yang bisa memberi saya petunjuk? Saran apa pun akan sangat dihargai.


model {
for(i in 1: N) {
CF01[i] ~ dnorm(0, 20)
CF02[i]  ~ dnorm(0, 1)
h[i] ~ dpois (lambda [i])
log(lambda [i]) <- beta0 + beta1*CF03[i] + beta2*CF02[i] + beta3*CF01[i] + beta4*IND[i]
}
beta0 ~ dnorm(0.0, 1.0E-6)
beta1 ~ dnorm(0.0, 1.0E-6)
beta2 ~ dnorm(0.0, 1.0E-6)
beta3 ~ dnorm(0.0, 1.0E-6)
beta4  <- log(p)
p ~ dunif(lower, upper)
}

INITS
list(beta0 = 0, beta1 = 0, beta2 = 0, beta3 = 0, p = 0.9)

DATA(LIST)
list(N = 154, lower = 0.80, upper = 0.95,

h = c(1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 3, 0, 0, 0, 2, 0, 1, 0, 4, 2,
3, 0, 2, 1, 1, 2, 2, 2, 3, 4, 2, 3, 1, 0, 1, 3, 3, 3, 1, 0, 1,
0, 5, 2, 1, 2, 1, 3, 3, 1, 1, 0, 2, 2, 0, 3, 0, 0, 3, 2, 2, 2,
1, 0, 3, 3, 1, 1, 1, 2, 1, 0, 1, 2, 1, 2, 0, 2, 1, 0, 0, 2, 5,
0, 2, 1, 0, 2, 1, 2, 2, 2, 0, 3, 2, 1, 3, 3, 3, 3, 0, 1, 3, 3,
3, 1, 0, 0, 1, 2, 1, 0, 1, 4, 1, 1, 1, 1, 2, 1, 3, 0, 0, 1, 1,
1, 1, 0, 2, 1, 0, 0, 1, 1, 5, 1, 1, 1, 3, 0, 1, 1, 1, 0, 2, 1,
0, 3, 3, 0, 0, 1, 2, 6, NA),

CF03 = c(-1.575, 0.170, -1.040, -0.010, -0.750,
0.665, -0.250, 0.145, -0.345, -1.915, -1.515,
0.215, -1.040, -0.035, 0.805, -0.860, -1.775,
1.725, -1.345, 1.055, -1.935, -0.160, -0.075,
-1.305, 1.175, 0.130, -1.025, -0.630, 0.065,
-0.665, 0.415, -0.660, -1.145, 0.165, 0.955,
-0.920, 0.250, -0.365, 0.750, 0.045, -2.760,
-0.520, -0.095, 0.700, 0.155, -0.580, -0.970,
-0.685, -0.640, -0.900, -0.250, -1.355, -1.330,
0.440, -1.505, -1.715, -0.330, 1.375, -1.135,
-1.285, 0.605, 0.360, 0.705, 1.380, -2.385, -1.875,
-0.390, 0.770, 1.605, -0.430, -1.120, 1.575, 0.440,
-1.320, -0.540, -1.490, -1.815, -2.395, 0.305,
0.735, -0.790, -1.070, -1.085, -0.540, -0.935,
-0.790, 1.400, 0.310, -1.150, -0.725, -0.150,
-0.640, 2.040, -1.180, -0.235, -0.070, -0.500,
-0.750, -1.450, -0.235, -1.635, -0.460, -1.855,
-0.925, 0.075, 2.900, -0.820, -0.170, -0.355,
-0.170, 0.595, 0.655, 0.070, 0.330, 0.395, 1.165,
0.750, -0.275, -0.700, 0.880, -0.970, 1.155, 0.600,
-0.075, -1.120, 1.480, -1.255, 0.255, 0.725,
-1.230, -0.760, -0.380, -0.015, -1.005, -1.605,
0.435, -0.695, -1.995, 0.315, -0.385, -0.175,
-0.470, -1.215, 0.780, -1.860, -0.035, -2.700,
-1.055, 1.210, 0.600, -0.710, 0.425, 0.155, -0.525,
-0.565),

CF02 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, 0.38, 0.06, -0.94,
-0.02, -0.28, -0.78, -0.95, 2.33, 1.43, 1.24, 1.26,
-0.75, -1.5, -2.09, 1.01, -0.05, 2.48, 2.48, 0.46,
0.46, -0.2, -1.11, 0.52, -0.37, 0.58, 0.86, 0.59,
-0.12, -1.33, 1.4, -1.84, -1.4, -0.76, -0.23,
-1.78, -1.43, 1.2, 0.32, 1.87, 0.43, -1.71, -0.54,
-1.25, -1.01, -1.98, 0.52, -1.07, -0.44, -0.24,
-1.31, -2.14, -0.43, 2.47, -0.09, -1.32, -0.3,
-0.99, 1.1, 0.41, 1.01, -0.19, 0.45, -0.07, -1.41,
0.87, 0.68, 1.61, 0.36, -1.06, -0.44, -0.16, 0.72,
-0.69, -0.94, 0.11, 1.25, 0.33, -0.05, 0.87, -0.37,
-0.2, -2.22, 0.26, -0.53, -1.59, 0.04, 0.16, -2.66,
-0.21, -0.92, 0.25, -1.36, -1.62, 0.61, -0.2, 0,
1.14, 0.27, -0.64, 2.29, -0.56, -0.59, 0.44, -0.05,
0.56, 0.71, 0.32, -0.38, 0.01, -1.62, 1.74, 0.27, 0.97,
1.22, -0.21, -0.05, 1.15, 1.49, -0.15, 0.05, -0.87,
-0.3, -0.08, 0.5, 0.84, -1.67, 0.69, 0.47, 0.44,
-1.35, -0.24, -1.5, -1.32, -0.08, 0.76, -0.57,
-0.84, -1.11, 1.94, -0.68),

CF01 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, -0.117, -0.211, -0.333, -0.229, -0.272,
-0.243, -0.148, 0.191, -0.263, -0.239, -0.168,
-0.381, -0.512, -0.338, -0.296, 0.067, 0.104,
-0.254, -0.167, -0.526, -0.096, -0.43, 0.013,
-0.438, -0.297, -0.131, -0.098, -0.046, -0.063,
-0.194, -0.155, -0.645, -0.603, -0.374, -0.214,
-0.165, -0.509, -0.171, -0.442, -0.468, -0.289,
-0.427, -0.519, -0.454, 0.046, -0.275, -0.401,
-0.542, -0.488, -0.52, -0.018, -0.551, -0.444,
-0.254, -0.286, 0.048, -0.03, -0.015, -0.219,
-0.029, 0.059, 0.007, 0.157, 0.141, -0.035, 0.136,
0.526, 0.113, 0.22, -0.022, -0.173, 0.021, -0.027,
0.261, 0.082, -0.266, -0.284, -0.097, 0.097, -0.06,
0.397, 0.315, 0.302, -0.026, 0.268, -0.111, 0.084,
0.14, -0.073, 0.287, 0.061, 0.035, -0.022, -0.091,
-0.22, -0.021, -0.17, -0.184, 0.121, -0.192,
-0.24, -0.283, -0.003, -0.45, -0.138, -0.143,
0.017, -0.245, 0.003, 0.108, 0.015, -0.219, 0.09,
-0.22, -0.004, -0.178, 0.396, 0.204, 0.342, 0.079,
-0.034, -0.122, -0.24, -0.125, 0.382, 0.072, 0.294,
0.577, 0.4, 0.213, 0.359, 0.074, 0.388, 0.253, 0.167),

IND = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0))

Bukankah Anda hanya meminta nilai lambda [N]?
whuber

@whuber ya, saya pikir itu benar, tetapi yang lebih mendasar, Anda perlu memiliki hal-hal yang ingin Anda prediksi (yaitu, memiliki distribusi posterior untuk) berbeda dari hal-hal yang sudah Anda amati. Anda dapat membuat prediksi secara eksplisit dalam winbugs atau postprocessing dengan menggunakan sampel beta.
atiretoo - mengembalikan monica

@atiretoo Sejauh yang saya tahu, lambda adalah persis apa yang ingin diprediksi: ini adalah model linier umum untuk distribusi Poisson dengan tautan log dan lambda adalah parameter Poisson yang diprediksi. Mereka belum diamati. Saya percaya semua yang perlu dilakukan di sini adalah mengatur monitor pada lambda [N].
whuber

@whuber, saya lebih suka mengatakan monitor h[N]daripada lambda[N]... dan Anda mendapatkan distribusi posterior dari nilai yang diprediksi.
Penasaran

@tomek tetapi h[N]bukan nilai yang diprediksi: itu akan menjadi kumpulan undian dari set distribusi Poisson yang diprediksi. Karena itu menggabungkan variasi dalam parameter Poisson dan variasi dari distribusi Poisson itu sendiri. Yang relevan adalah distribusi posterior lambda[N].
whuber

Jawaban:


6

Cukup tambahkan variabel hke daftar parameter yang akan dipantau. Jika Anda menggunakan paket seperti R2WinBUGS, kemudian tambahkan variabel hke daftar yang diteruskan ke parameters.to.saveargumen ke bugsfungsi. Kemudian lihat nilai terakhir Anda di h(yang dengan NA) - Anda akan mendapatkan distribusi posterior di sana.

Ini adalah cara yang biasa untuk membuat prediksi dalam inferensi bayesian ( lihat juga pertanyaan ini ). Itu bagus dan sederhana! Tidak ada lagi pemisahan evaluasi dan prediksi parameter. Semuanya dilakukan sekaligus. Penyebaran parameter posterior diberikan oleh data aktual dan disebarkan ke nilai-nilai NA (sebagai "prediksi").


Tomas, terima kasih atas bantuan Anda. Saya mencoba memonitor variabel h dalam Sample Monitor Tool tetapi tidak berhasil. Bisakah Anda membantu saya lagi? Berikut ini adalah prosedur yang saya lakukan di WinBUGS (Saya tidak tahu cara menggunakan R2WinBUGS): 1) pilih Sample di Sample Monitor Tool 2) ketik h pada kotak putih bertanda node 3) klik pada tombol bertanda set 4) h adalah tidak ada dalam daftar parameter yang ingin saya monitor, sedangkan parameter lainnya (beta0, beta1, beta2, beta3, p) ditunjukkan dalam daftar. Apakah Anda tahu bagaimana cara menambahkan "h" ke daftar parameter yang ingin saya pantau? Terima kasih lagi
Bo Yu

@ BoYu, saya tidak tahu bagaimana melakukannya secara langsung di WinBUGS karena saya menjalankan WinBUGS dari R, menggunakan paket R2WinBUGS. Ini jauh lebih praktis karena Anda bisa menyimpan skrip R dan menjalankan semuanya sebagai batch, bersama dengan menghasilkan grafik Anda sendiri dll. Lihat di sini sebagai contoh skrip.
Penasaran

Yang mengatakan, itu pasti juga akan mungkin di WinBUGS sendiri, tapi saya tidak tahu caranya (dan saya kira kebanyakan orang menyebutnya dari R).
Penasaran

1
Pertama-tama, terima kasih, whuber, atiretoo, dan Tomas! Seperti yang telah disebutkan, ya, itu adalah model linier umum, variabel h dilengkapi oleh distribusi Poisson dengan tingkat yang bervariasi (lambda) dikondisikan dengan prediktor yang berbeda (CF01, CF02, CF03, dan IND). Nilai terakhir h adalah apa yang perlu saya ketahui dan tidak diamati (ditandai sebagai NA), sementara semua nilai h lainnya diamati. Saya pikir whuber benar, saya perlu mengatur lambda sebagai parameter di Sample Monitor Tool dan memeriksa statistik nilai terakhir lambda, dan selanjutnya mendapatkan prediksi saya tentang h terakhir. Terima kasih semuanya.
Bo Yu

1
@ Tomas, terima kasih banyak. Ya kamu benar! WinBUGS menyediakan prediksi h [N], termasuk statistik dan kepadatan probabilitas. Aku mengerti sekarang. Salam,
Bo Yu
Dengan menggunakan situs kami, Anda mengakui telah membaca dan memahami Kebijakan Cookie dan Kebijakan Privasi kami.
Licensed under cc by-sa 3.0 with attribution required.